Photophysics of deinoxanthin, the keto-carotenoid bound to the main S-layer unit of Deinococcus radiodurans

. 2020 Apr 15 ; 19 (4) : 495-503.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32236233
Odkazy

PubMed 32236233
DOI 10.1039/d0pp00031k
PII: 10.1039/d0pp00031k
Knihovny.cz E-zdroje

The keto-carotenoid deinoxanthin, which occurs in the UV-resistant bacterium Deinococcus radiodurans, has been investigated by ultrafast time-resolved spectroscopy techniques. We have explored the excited-state properties of deinoxanthin in solution and bound to the S-layer Deinoxanthin Binding Complex (SDBC), a protein complex important for UV resistance and thermostability of the organism. Binding of deinoxanthin to SDBC shifts the absorption spectrum to longer wavelengths, but excited-state dynamics remain unaffected. The lifetime of the lowest excited state (S1) of isolated deinoxanthin in methanol is 2.1 ps. When bound to SDBC, the S1 lifetime is 2.4 ps, indicating essentially no alteration of the effective conjugation length upon binding. Moreover, our data show that the conformational disorder in both ground and excited states is the same for deinoxanthin in methanol and bound to SDBC. Our results thus suggest a rather loosely bound carotenoid in SDBC, making it very distinct from other carotenoid-binding proteins such as Orange Carotenoid Protein (OCP) or crustacyanin, both of which significantly restrain the carotenoid at the binding site. Three deinoxanthin analogs were found to bind the SDBC, suggesting a non-selective binding site of deinoxanthin in SDBC.

Zobrazit více v PubMed

A. Gall, R. Berera, M. T. A. Alexandre, A. A. Pascal, L. Bordes, M. M. Mendes-Pinto, S. Andrianambinintsoa, K. V. Stoitchkova, A. Marin, L. Valkunas, P. Horton, J. T. M. Kennis, R. van Grondelle, A. Ruban and B. Robert, Molecular adaptation of photoprotection: Triplet states in light-harvesting proteins Biophys. J., 2011, 101, 934–942. DOI

C. D. P. Duffy and A. V. Ruban, Dissipative pathways in the photosystem-II antenna in plants, J. Photochem. Photobiol., B, 2015, 152, 215–226.

C. S. Foote, Y. C. Chang and R. W. Denny, Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection, J. Am. Chem. Soc., 1970, 92, 5216–5218.

H. F. Ji, Insight into the strong antioxidant activity of deinoxanthin, a unique carotenoid in Deinococcus radiodurans, Int. J. Mol. Sci., 2010, 11, 4506–4510.

T. Polívka and V. Sundström, Ultrafast dynamics of carotenoid excited states - from solution to natural and artificial systems, Chem. Rev., 2004, 104, 2021–2072.

M. M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A. A. Pascal, A. Gall and B. Robert, Electronic absorption and ground state structure of carotenoid molecules, J. Phys. Chem. B, 2013, 117, 11015–11021.

M. Fuciman, G. Keşan, A. LaFountain, H. A. Frank and T. Polívka, Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure, J. Phys. Chem. B, 2015, 119, 1457–1467.

R. Croce and H. van Amerongen, Natural strategies for photosynthetic light harvesting, Nat. Chem. Biol., 2014, 10, 492–501.

T. Polivka and H. A. Frank, Molecular factors controlling photosynthetic light harvesting by carotenoids, Acc. Chem. Res., 2010, 43, 1125–1134.

C. A. Kerfeld, M. R. Melnicki, M. Sutter and M. A. Dominguez-Martin, Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs, New Phytol., 2017, 215, 937–951.

C. A. Kerfeld, M. R. Sawaya, V. Brahmandam, D. Cascio, K. K. Ho, C. C. Trevithick-Sutton, D. W. Krogmann and T. O. Yeates, The crystal structure of a cyanobacterial watersoluble carotenoid binding protein, Structure, 2003, 11, 55–65.

T. Polívka, C. A. Kerfeld, T. Pascher, V. Sundström, et al., Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the Orange Carotenoid Protein from the cyanobacterium Arthrospira maxima, Biochemistry, 2005, 44, 3994–4003.

A. Wilson, C. Punginelli, A. Gall, C. Bonetti, M. Alexandre, J. M. Routaboul, C. A. Kerfeld, R. van Grondelle, B. Robert, J. T. Kennis and D. Kirilovsky, A photoactive carotenoid protein acting as light intensity sensor, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 12075–12080.

R. L. Leverenz, M. Sutter, A. Wilson, S. Gupta, A. Thurotte, C. B. de Carbon, C. J. Petzold, C. Ralston, F. Perreau, D. Kirilovsky and C. A. Kerfeld, A 12 Å carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection, Science, 2015, 348, 1463–1466.

L. Tian, I. H. M. van Stokkum, R. B. M. Koehorst, A. Jongerius, D. Kirilovsky and H. an Amerongen, Site, rate, and mechanism of photoprotective quenching in cyanobacteria, J. Am. Chem. Soc., 2011, 133, 18304–18311.

V. Šlouf, V. Kuznetsova, M. Fuciman, C. B. de Carbon, A. Wilson, D. Kirilovsky and T. Polívka, Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria, Photosynth. Res., 2017, 131, 105–117.

P. E. Konold, I. H. M. van Stokkum, F. Muzzopappa, A. Wilson, M. L. Groot, D. Kirilovsky and J. T. M. Kennis, Photoactivation mechanism, timing of protein secondary structure dynamics and carotenoid translocation in the Orange Carotenoid Protein, J. Am. Chem. Soc., 2019, 141, 520–530.

M. Cianci, P. J. Rizkallah, A. Olczak, J. Raftery, N. E. Chayen, P. F. Zagalsky and J. R. Helliwell, The molecular basis of the coloration mechanism in lobster shell: beta-crustacyanin at 3.2 Å resolution, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 9795–9800.

R. P. Ilagan, R. L. Christensen, T. W. Chapp, G. N. Gibson, T. Pascher, T. Polívka and H. A. Frank, Femtosecond timeresolved absorption spectroscopy of astaxanthin in solution and in alpha-crustacyanin, J. Phys. Chem. A, 2005, 109, 3120–3127.

D. Loco, F. Buda, J. Lugtenburg and B. Mennucci, The dynamic origin of color tuning in proteins revealed by a carotenoid pigment, J. Phys. Chem. Lett., 2018, 9, 2404–2410.

P. Bhosale and P. S. Bernstein, Vertebrate and invertebrate carotenoid-binding proteins, Arch. Biochem. Biophys., 2007, 458, 121–127.

H. H. Billsten, P. Bhosale, A. Yemelyanov, P. S. Bernstein and T. Polívka, Photophysical properties of xanthophylls in carotenoproteins from human retina, Photochem. Photobiol., 2003, 78, 138–183.

D. Farci, C. Slavov, E. Tramontano and D. Piano, The S-layer protein DR_2577 binds deinoxanthin and under desiccation conditions protects against UV radiation in Deinococcus radiodurans, Front. Microbiol., 2016, 7, 155.

D. Farci, F. Esposito, S. El Alaoui and D. Piano, S-layer proteins as a source of carotenoids: Isolation of the carotenoid cofactor deinoxanthin from its S-layer protein DR_2577, Food Res. Int., 2017, 99, 868–876.

A. W. Anderson, H. C. Nordon, R. Cain, G. Parrish and D. Duggan, Studies on a radio-resistant micrococcus. Isolation, morphology, cultural characteristics, and resistance to gamma radiation, Food Technol., 1956, 10, 575–578.

M. M. Cox and J. R. Battista, Deinococcus radiodurans - the consummate survivor, Nat. Rev. Microbiol., 2005, 3, 882–892.

J. R. Battista, Against all odds: the survival strategies of Deinococcus radiodurans, Annu. Rev. Microbiol., 1997, 51, 203–224.

J. R. Battista, A. M. Earl and M. J. Park, Why is Deinococcus radiodurans so resistant to ionizing radiation?, Trends Microbiol., 1999, 7, 362–365.

U. B. Sleytr, Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly, and function, Int. Rev. Cytol., 1978, 53, 1–62.

U. B. Sleytr, P. Messner, D. Pum and M. Sara, Crystalline bacterial cell surface layers, Mol. Microbiol., 1993, 10, 911–916.

T. J. Beveridge, P. H. Pouwels, M. Sára, A. Kotiranta, K. Lounatmaa, K. Kari, K. E. Kerosuo, M. Haapasalo, E. M. Egelseer, I. Schocher, U. B. Sleytr, L. Morelli, M. L. Callegari, J. F. Nomellini, W. H. Bingle, J. Smit, E. Leibovitz, M. Lemaire, I. Miras, S. Salamitou, P. Béguin, H. Ohayon, P. Gounon, M. Matuschek and S. F. Koval, Functions of S-layers, FEMS Microbiol. Rev., 1997, 20, 99–149.

D. Farci, M. W. Bowler, J. Kirkpatrick, S. McSweeney, E. Tramontano and D. Piano, New features of the cell wall of the radio-resistant bacterium Deinococcus radiodurans, Biochim. Biophys. Acta, 2014, 1838, 1978–1984.

D. Farci, M. W. Bowler, F. Esposito, S. McSweeney, E. Tramontano and D. Piano, Purification and characterization of DR_2577 (SlpA) a major S-layer protein from Deinococcus radiodurans, Front. Microbiol., 2015, 6, 414.

D. Farci, G. Guadalupi, K. Bierła, R. Lobinski and D. Piano, The role of iron and copper on the oligomerization dynamics of DR_2577, the main S-layer protein of Deinococcus radiodurans, Front. Microbiol., 2019, 10, 1450.

H. Rothfuss, J. C. Lara, A. K. Schmid and M. E. Lidstrom, Involvement of the S-layer proteins Hpi and SlpA in the maintenance of cell envelope integrity in Deinococcus radiodurans, R1, Microbiology, 2006, 152, 2779–2787.

D. Farci, C. Slavov and D. Piano, Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans, Photochem. Photobiol. Sci., 2018, 17, 81–88.

H. A. Frank, J. A. Bautista, J. Josue, Z. Pendon, R. G. Hiller, F. P. Sharples, D. Gosztola and M. R. Wasielewski, Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids, J. Phys. Chem. B, 2000, 104, 4569–4577.

D. Zigmantas, R. G. Hiller, F. P. Sharples, H. A. Frank, V. Sundström and T. Polivka, Effect of a conjugated carbonyl group on the photophysical properties of carotenoids, Phys. Chem. Chem. Phys., 2004, 6, 3009–3016.

P. Chábera, M. Fuciman, P. Hríbek and T. Polívka, Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids, Phys. Chem. Chem. Phys., 2009, 11, 8795–8803.

R. Litvín, D. Bína, M. Herbstová and Z. Gardian, Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica, Photosynth. Res., 2016, 130, 137–150.

S. W. Jeffrey, R. F. C. Mantoura and S. W. Wright, Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, UNESCO Publishing, 2005.

A. Hansler, Q. Chen, Y. Ma and S. S. Gross, Untargeted metabolite profiling reveals that nitric oxide biosynthesis is an endogenous modulator of carotenoid biosynthesis in Deinococcus radiodurans and is required for extreme ionizing radiation resistance, Arch. Biochem. Biophys., 2016, 589, 38–52.

T. Polívka, S. P. Balashov, P. Chábera, E. S. Imasheva, A. Yartsev, V. Sundström and J. K. Lanyi, Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin, Biophys. J., 2009, 96, 2268–2277.

M. Bondanza, L. Cupellini, F. Lipparini and B. Menucci, The multiple roles of the protein in the photoactivation of Orange Carotenoid Protein, Chem, 2020, 6, 1–17.

F. Zsila, J. Deli, Z. Bikadi and M. Simonyi, Supramolecular assemblies of carotenoids, Chirality, 2001, 13, 739–744.

C. C. Gradinaru, J. T. Kennis, E. Papagiannakis, I. H. van Stokkum, R. J. Cogdell, G. R. Fleming, R. A. Niederman and R. van Grondelle, An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 2364–2373.

D. M. Niedzwiedzki, J. O. Sullivan, T. Polívka, R. R. Birge and H. A. Frank, Femtosecond time-resolved transient absorption spectroscopy of xanthophylls, J. Phys. Chem. B, 2006, 110, 22872–22957.

D. M. Niedzwiedzki and L. Cranston, Excited state lifetimes and energies of okenone and chlorobactene, exemplary keto and non-keto aryl carotenoids, Phys. Chem. Chem. Phys., 2015, 17, 13245–13256.

T. Polivka, J. L. Herek, D. Zigmantas, H. E. Åkerlund and V. Sundström, Direct observation of the (forbidden) S1 state in carotenoids, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 4914–4917.

I. H. M. van Stokkum, D. Larsen and R. van Grondelle, Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 2004, 1657, 82–104.

F. Ehlers, M. Scholz, K. Oum and T. Lenzer, Excited-state dynamics of 3,3′-dihydroxyisorenieratene and (3R,3′R)zeaxanthin: Observation of vibrationally hot S0 species, Arch. Biochem. Biophys., 2018, 646, 137–144.

V. Balevicius, D. Abramavicius, T. Polivka, A. G. Pour and J. Hauer, A unified picture of S* in carotenoids, J. Phys. Chem. Lett., 2016, 7, 3347–3352.

V. Balevicius, T. Wei, D. Di Tommaso, D. Abramavicius, J. Hauer, T. Polívka and C. D. P. Duffy, The full dynamics of energy relaxation in large organic molecules: From photoexcitation to solvent heating, Chem. Sci., 2019, 10, 47924804. DOI

D. Farci, M. A. Aksoyoglu, S. F. Farci, J. A. Bafna, I. Bodrenko, M. Ceccarelli, J. Kirkpatrick, M. Winterhalter, S. Kereïche and D. Piano, Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features, J. Biol. Chem., 2020, DOI: 10.1074/jbc.RA119.012174. In press.

A. Mortensen and L. H. Skibsted, Importance of carotenoid structure in radical-scavenging reactions, J. Agric. Food Chem., 1997, 45, 2970–2977. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...