An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28111887
PubMed Central
PMC5506647
DOI
10.1111/pbi.12697
Knihovny.cz E-zdroje
- Klíčová slova
- BioNano, Legume comparative genomics, advanced reference assembly, forage legumes, gene expression, transcriptome,
- MeSH
- genom rostlinný genetika MeSH
- genomika metody MeSH
- sekvenční analýza DNA metody MeSH
- Trifolium genetika MeSH
- Publikační typ
- časopisecké články MeSH
Subterranean clover is an important annual forage legume, whose diploidy and inbreeding nature make it an ideal model for genomic analysis in Trifolium. We reported a draft genome assembly of the subterranean clover TSUd_r1.1. Here we evaluate genome mapping on nanochannel arrays and generation of a transcriptome atlas across tissues to advance the assembly and gene annotation. Using a BioNano-based assembly spanning 512 Mb (93% genome coverage), we validated the draft assembly, anchored unplaced contigs and resolved misassemblies. Multiple contigs (264) from the draft assembly coalesced into 97 super-scaffolds (43% of genome). Sequences longer than >1 Mb increased from 40 to 189 Mb giving 1.4-fold increase in N50 with total genome in pseudomolecules improved from 73 to 80%. The advanced assembly was re-annotated using transcriptome atlas data to contain 31 272 protein-coding genes capturing >96% of the gene content. Functional characterization and GO enrichment confirmed gene expression for response to water deprivation, flavonoid biosynthesis and embryo development ending in seed dormancy, reflecting adaptation to the harsh Mediterranean environment. Comparative analyses across Papilionoideae identified 24 893 Trifolium-specific and 6325 subterranean-clover-specific genes that could be mined further for traits such as geocarpy and grazing tolerance. Eight key traits, including persistence, improved livestock health by isoflavonoid production in addition to important agro-morphological traits, were fine-mapped on the high-density SNP linkage map anchored to the assembly. This new genomic information is crucial to identify loci governing traits allowing marker-assisted breeding, comparative mapping and identification of tissue-specific gene promoters for biotechnological improvement of forage legumes.
Department of Agriculture and Food Western Australia South Perth WA Australia
Zobrazit více v PubMed
Abberton, M.T. and Marshall, A.H. (2005) Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135.
Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. PubMed
Blanning, T. (2008) The Pursuit of Glory: The Five Revolutions that Made Modern Europe: 1648–1815. New York: Penguin Books.
Boeckmann, B. , Bairoch, A. , Apweiler, R. , Blatter, M.‐C. , Estreicher, A. , Gasteiger, E. , Martin, M.J. et al. (2003) The SWISS‐PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370. PubMed PMC
Bolger, A.M. , Lohse, M. and Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. PubMed PMC
Bray, N. , Pimentel, H. , Melsted, P. and Pachter, L. (2015) Near‐optimal RNA‐Seq quantification. arXiv:1505.02710 [cs, q‐bio].
Campbell, M.A. , Zhu, W. , Jiang, N. , Lin, H. , Ouyang, S. , Childs, K.L. , Haas, B.J. et al. (2007) Identification and characterization of lineage‐specific genes within the Poaceae. Plant Physiol. 145, 1311–1322. PubMed PMC
Cao, H. , Hastie, A.R. , Cao, D. , Lam, E.T. , Sun, Y. , Huang, H. , Liu, X. et al. (2014) Rapid detection of structural variation in a human genome using nanochannel‐based genome mapping technology. GigaScience 3, 34. PubMed PMC
Chaney, L. , Sharp, A.R. , Evans, C.R. and Udall, J.A. (2016) Genome Mapping in Plant Comparative Genomics. Trends Plant Sci. 21, 770–780. PubMed
Francis, C.M. and Millington, A.J. (1965) Isoflavone mutations in subterranean clover. 1. Their production, characterisation and inheritance. Aust. J. Agric. Res. 16, 567–573.
Futschik, M.E. and Carlisle, B. (2005) Noise‐robust soft clustering of gene expression time‐course data. J. Bioinform. Comput. Biol. 03, 965–988. PubMed
Garg, R. , Patel, R.K. , Tyagi, A.K. and Jain, M. (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18, 53–63. PubMed PMC
Ghamkhar, K. , Isobe, S. , Nichols, P.G.H. , Faithfull, T. , Ryan, M.H. , Snowball, R. , Sato, S. et al. (2011) The first genetic maps for subterranean clover (Trifolium subterraneum L.) and comparative genomics with T. pratense L. and Medicago truncatula Gaertn. to identify new molecular markers for breeding. Mol. Breed. 30, 213–226.
Goodstein, D.M. , Shu, S. , Howson, R. , Neupane, R. , Hayes, R.D. , Fazo, J. , Mitros, T. et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186. PubMed PMC
Guigó, R. , Agarwal, P. , Abril, J.F. , Burset, M. and Fickett, J.W. (2000) An assessment of gene prediction accuracy in large DNA Sequences. Genome Res. 10, 1631–1642. PubMed PMC
Hirakawa, H. , Kaur, P. , Shirasawa, K. , Nichols, P. , Nagano, S. , Appels, R. , Erskine, W. et al. (2016) Draft genome sequence of subterranean clover, a reference for genus Trifolium . Sci. Rep. 6, 30358. PubMed PMC
Hoff, K.J. , Lange, S. , Lomsadze, A. , Borodovsky, M. and Stanke, M. (2016) BRAKER1: unsupervised RNA‐Seq‐based genome annotation with GeneMark‐ET and AUGUSTUS. Bioinformatics, 32, 767–769. PubMed PMC
Huntley, R.P. , Sawford, T. , Mutowo‐Meullenet, P. , Shypitsyna, A. , Bonilla, C. , Martin, M.J. and O'Donovan, C. (2015) The GOA database: Gene Ontology annotation updates for 2015. Nucleic Acids Res. 43, D1057–D1063. PubMed PMC
Jain, M. , Misra, G. , Patel, R.K. , Priya, P. , Jhanwar, S. , Khan, A.W. , Shah, N. et al. (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. 74, 715–729. PubMed
Kanehisa, M. , Sato, Y. and Morishima, K. (2016) BlastKOALA and GhostKOALA: KEGG Tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731. PubMed
Kim, D. , Langmead, B. and Salzberg, S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Meth. 12, 357–360. PubMed PMC
Lam, E.T. , Hastie, A. , Lin, C. , Ehrlich, D. , Das, S.K. , Austin, M.D. , Deshpande, P. et al. (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771–776. PubMed PMC
Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079. PubMed PMC
Lin, H. , Moghe, G. , Ouyang, S. , Iezzoni, A. , Shiu, S.‐H. , Gu, X. and Buell, C.R. (2010) Comparative analyses reveal distinct sets of lineage‐specific genes within Arabidopsis thaliana . BMC Evol. Biol. 10, 41. PubMed PMC
Lomsadze, A. , Burns, P.D. and Borodovsky, M. (2014) Integration of mapped RNA‐Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 42, e119. 10.1093/nar/gku557. PubMed DOI PMC
McGuire, W.S. (1985) Subterranean clover: Clover science and technology. American Society of Agronomy, Crop Science Society of America and Soil Science Society of America 1985, 515–534.
Nichols, P.G.H. , Collins, W.J. and Barbetti, M.J. (1996) Registered cultivars of subterranean clover ‐ their characteristics, origin and identification. Agriculture Western Australia Bulletin No. 4327, 61.
Nichols, P.G.H. , Foster, K.J. , Piano, E. , Pecetti, L. , Kaur, P. , Ghamkhar, K. and Collins, W.J. (2013) Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospects. Crop Pasture Sci. 64, 312–346.
Ondov, B.D. , Treangen, T.J. , Melsted, P. , Mallonee, A.B. , Bergman, N.H. , Koren, S. and Phillippy, A.M. (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology 17, 132. doi 10.1186/s13059-016-0997-x PubMed DOI PMC
Parra, G. , Bradnam, K. and Korf, I. (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23, 1061–1067. PubMed
Piano, E. , Pecetti, L. , Boller, B. , Posselt, U.K. and Veronesi, F. (2010) Minor Legume Species. In Fodder Crops and Amenity Grasses ( Boller, F. , Posselt, U.K. , and Veronesi, F. , eds), pp. 477–500. New York: Springer; .
Putnam, N.H. , O'Connell, B.L. , Stites, J.C. , Rice, B.J. , Blanchette, M. , Calef, R. et al. (2016) Chromosome‐scale shotgun assembly using an in vitro method for long‐range linkage. Genome Res. 26, 342–350. PubMed PMC
Quinlivan, B.J. (1961) The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. Aust. J. Agric. Res. 12, 1009–1022.
Rani, R. , Yadav, P. , Barbadikar, K.M. , Baliyan, N. , Malhotra, E.V. , Singh, B.K. , Kumar, A. et al. (2016) CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol. Lett. 38, 1991–2006. PubMed
Shelton, J.M. , Coleman, M.C. , Herndon, N. , Lu, N. , Lam, E.T. , Anantharaman, T. , Sheth, P. et al. (2015) Tools and pipelines for BioNano data: molecule assembly pipeline and FASTA super scaffolding tool. BMC Genom. 16, 734. PubMed PMC
Šimková, H. , Číhalíková, J. , Vrána, J. , Lysák, M.A. and Doležel, J. (2003) Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant. 46, 369–373.
Soderlund, C. , Nelson, W. , Shoemaker, A. and Paterson, A. (2006) SyMAP: a system for discovering and viewing syntenic regions of FPC maps. Genome Res. 16, 1159–1168. PubMed PMC
Soderlund, C. , Bomhoff, M. and Nelson, W.M. (2011) SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res. 39, e68. PubMed PMC
Stanke, M. , Diekhans, M. , Baertsch, R. and Haussler, D. (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24, 637–644. PubMed
Staňková, H. , Hastie, A.R. , Chan, S. , Vrána, J. , Tulpová, Z. , Kubaláková, M. et al. (2016) BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotech. J. 14, 1523–1531. PubMed PMC
Sulas, L. , (2005) The future role of forage legumes in Mediterranean‐climate areas. In Grasslands: developments opportunities perspectives. ( Reynolds, S. and Frame, J. , eds), pp. 29–54. Rome: FAO and Plymouth UK: Science Publishers, Inc.
Supek, F. , Bošnjak, M. , Škunca, N. and Šmuc, T. (2011) REVIGO Summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800. PubMed PMC
Vižintin, L. , Javornik, B. and Bohanec, B. (2006) Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 170, 859–866.
Vrána, J. , Cápal, P. , Číhalíková, J. , Kubaláková, M. and Doležel, J. (2016) Flow sorting plant chromosomes. Methods Mol. Biol. 1429, 119–134. PubMed
Wang, J.K. , Li, H.H. , Zhang, Y. and Meng, L. (2014) Users’ Manual of QTL IciMapping v4.0. Beijing: Institute of Crop Science, CAAS.
Wheelan, S.J. and Boguski, M.S. (1998) Late‐night thoughts on the sequence annotation problem. Genome Res. 8, 168–169. PubMed
Flow Sorting-Assisted Optical Mapping
Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)
Large-Scale Structural Variation Detection in Subterranean Clover Subtypes Using Optical Mapping