Variation in Ribosomal DNA in the Genus Trifolium (Fabaceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34579303
PubMed Central
PMC8465422
DOI
10.3390/plants10091771
PII: plants10091771
Knihovny.cz E-zdroje
- Klíčová slova
- 26S rDNA, 5S rDNA, clover, fluorescent in situ hybridization, genome structure, nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
The genus Trifolium L. is characterized by basic chromosome numbers 8, 7, 6, and 5. We conducted a genus-wide study of ribosomal DNA (rDNA) structure variability in diploids and polyploids to gain insight into evolutionary history. We used fluorescent in situ hybridization to newly investigate rDNA variation by number and position in 30 Trifolium species. Evolutionary history among species was examined using 85 available sequences of internal transcribed spacer 1 (ITS1) of 35S rDNA. In diploid species with ancestral basic chromosome number (x = 8), one pair of 5S and 26S rDNA in separate or adjacent positions on a pair of chromosomes was prevalent. Genomes of species with reduced basic chromosome numbers were characterized by increased number of signals determined on one pair of chromosomes or all chromosomes. Increased number of signals was observed also in diploids Trifolium alpestre and Trifolium microcephalum and in polyploids. Sequence alignment revealed ITS1 sequences with mostly single nucleotide polymorphisms, and ITS1 diversity was greater in diploids with reduced basic chromosome numbers compared to diploids with ancestral basic chromosome number (x = 8) and polyploids. Our results suggest the presence of one 5S rDNA site and one 26S rDNA site as an ancestral state.
Department of Experimental Biology Faculty of Sciences Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
Zohary M., Heller D. The Genus Trifolium. The Israel Academy of Sciences and Humanities; Jerusalem, Israel: 1984. (Publications of the Israel Academy of Sciences and Humanities. Section of Sciences).
Gillett J.M., Taylor N.L., Collins M. The World of Clovers. 1st ed. Iowa State University Press; Ames, IA, USA: 2001.
Ellison N.W., Liston A., Steiner J.J., Williams W.M., Taylor N.L. Molecular phylogenetics of the clover genus (Trifolium-Leguminosae) Mol. Phylogenet. Evol. 2006;39:688–705. doi: 10.1016/j.ympev.2006.01.004. PubMed DOI
Nosrati H., Feizi M.H., Razban-Haghighi A., Seyet-Tarrah S. Impact of life history on genetic variation in Trifolium (Fabaceae) estimated by ISSR. Environ. Exp. Biol. 2015;13:83–88.
Sprent J.I. Nodulation in Legumes. Royal Botanic Gardens; Kew, UK: 2001.
Taylor N.L., Quesenberry K.H., Anderson M.K. Genetic system relationships in Trifolium. Econ. Bot. 1979;33:431–441. doi: 10.1007/BF02858339. DOI
Smýkal P., Coyne C.J., Ambrose M.J., Maxted N., Schaefer H., Blair M.W., Berger J., Greene S.L., Nelson M.N., Besharat N., et al. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 2015;34:43–104. doi: 10.1080/07352689.2014.897904. DOI
Panitsa M., Trigas P., Iatrou G., Sfenthourakis S. Factors effecting plant species richness and endemism on land-bridge islands—An example from the East Aegean archipelago. Acta Oecol. 2010;36:431–437. doi: 10.1016/j.actao.2010.04.004. DOI
Scoppola A., Tirado J.L., Gutiérrez F.M., Magrini S. The genus Trifolium (Fabaceae) in south Europe: A critical review on species richness and distribution. Nord. J. Bot. 2018;36:njb-01723. doi: 10.1111/njb.01723. DOI
Falistocco E., Marconi G., Falcinelli M. Comparative cytogenetic study on Trifolium subterraneum (2n = 16) and Trifolium israeliticum (2n = 12) Genome. 2013;56:307–313. doi: 10.1139/gen-2013-0055. PubMed DOI
Vižintin L., Javornik B., Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 2006;170:859–866. doi: 10.1016/j.plantsci.2005.12.007. DOI
Goldblatt P. Cytology and Phylogeny of Leguminosae. In: Polhill R.M., Raven P.H., editors. Advances in Legume Systematics, Part 2. Royal Botanic Gardens; Kew, UK: 1981. pp. 427–463.
Cleveland R.W. Reproductive Cycle and Cytogenetics. In: Taylor N.L., editor. Agronomy Monographs. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America; Madison, WI, USA: 1985. pp. 71–110.
Plant DNA C-Value Database. [(accessed on 10 May 2021)]. Available online: https://cvalues.science.kew.org/search/angiosperm.
Ištvánek J., Jaroš M., Křenek A., Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Am. J. Bot. 2014;101:327–337. doi: 10.3732/ajb.1300340. PubMed DOI
De Vega J.J., Ayling S., Hegarty M., Kudrna D., Goicoechea J.L., Ergon Å., Rognli O.A., Jones C., Swain M., Geurts R., et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 2015;5:17394. doi: 10.1038/srep17394. PubMed DOI PMC
Griffiths A.G., Moraga R., Tausen M., Gupta V., Bilton T.P., Campbell M.A., Ashby R., Nagy I., Khan A., Larking A., et al. Breaking Free: The genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell. 2019;31:1466–1487. doi: 10.1105/tpc.18.00606. PubMed DOI PMC
Dluhošová J., Ištvánek J., Nedělník J., Řepková J. Red clover (Trifolium pratense) and zigzag clover (T. medium)—A picture of genomic similarities and differences. Front. Plant. Sci. 2018;9:724. doi: 10.3389/fpls.2018.00724. PubMed DOI PMC
Hirakawa H., Kaur P., Shirasawa K., Nichols P., Nagano S., Appels R., Erskine W., Isobe S.N. Draft genome sequence of subterranean clover, a reference for genus Trifolium. Sci. Rep. 2016;6:30358. doi: 10.1038/srep30358. PubMed DOI PMC
Kaur P., Bayer P.E., Milec Z., Vrána J., Yuan Y., Appels R., Edwards D., Batley J., Nichols P., Erskine W., et al. An advanced reference genome of Trifolium subterraneum L. reveals genes related to agronomic performance. Plant Biotechnol. J. 2017;15:1034–1046. doi: 10.1111/pbi.12697. PubMed DOI PMC
Sveinsson S., Cronk Q. Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium) BMC Evol. Biol. 2014;14:228. doi: 10.1186/s12862-014-0228-6. PubMed DOI PMC
Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Sastri D.C., Hilu K., Appels R., Lagudah E.S., Playford J., Baum B.R. An overview of evolution in plant 5S DNA. Plant Syst. Evol. 1992;183:169–181. doi: 10.1007/BF00940801. DOI
Garcia S., Garnatje T., Kovařík A. Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma. 2012;121:389–394. doi: 10.1007/s00412-012-0368-7. PubMed DOI
Roa F., Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol. Biol. 2012;12:225. doi: 10.1186/1471-2148-12-225. PubMed DOI PMC
Roa F., Guerra M. Non-Random Distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 2015;146:243–249. doi: 10.1159/000440930. PubMed DOI
Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y., Kaneko T., Sakurai N., Okumura K., Klimenko I., et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.) DNA Res. 2005;12:301–364. doi: 10.1093/dnares/dsi018. PubMed DOI
Kulikova O., Gualtieri G., Geurts R., Kim D.J., Cook D., Huguet T., de Jong J.H., Fransz P.F., Bisseling T. Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J. 2001;27:49–58. doi: 10.1046/j.1365-313x.2001.01057.x. PubMed DOI
Cerbah M., Kevei Z., Siljak-Yakovlev S., Kondorosi E., Kondorosi A., Trinh T.H. FISH chromosome mapping allowing karyotype analysis in Medicago truncatula lines Jemalong J5 and R-108-1. Mol. Plant Microbe. Interact. 1999;12:947–950. doi: 10.1094/MPMI.1999.12.11.947. DOI
Falistocco E., Falcinelli M. Genomic organization of rDNA loci in natural populations of Medicago truncatula Gaertn. Hereditas. 2003;138:1–5. doi: 10.1034/j.1601-5223.2003.01540.x. PubMed DOI
Weiss-Schneeweiss H., Schneeweiss G.M., Stuessy T.F., Mabuchi T., Park J., Jang C., Sun B. Chromosomal stasis in diploids contrasts with genome restructuring in auto- and allopolyploid taxa of Hepatica (Ranunculaceae) New Phytol. 2007;174:669–682. doi: 10.1111/j.1469-8137.2007.02019.x. PubMed DOI
Jang T.S., McCann J., Parker J.S., Takayama K., Hong S.P., Schneeweiss G.M., Weiss-Schneeweiss H. rDNA loci evolution in the genus Glechoma (Lamiaceae) PLoS ONE. 2016;11:e0167177. doi: 10.1371/journal.pone.0167177. PubMed DOI PMC
Falistocco E., Torricelli R., Falcinelli M. Genomic relationships between Medicago murex Willd. and Medicago lesinsii E. Small. investigated by in situ hybridization. Theor. Appl. Genet. 2002;105:829–833. doi: 10.1007/s00122-002-1055-5. PubMed DOI
Ansari H.A., Ellison N.W., Williams W.M. Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae) Chromosoma. 2008;117:159–167. doi: 10.1007/s00412-007-0134-4. PubMed DOI
Xu B., Zeng X.M., Gao X.F., Jin D.P., Zhang L.B. ITS Non-concerted evolution and rampant hybridization in the legume genus Lespedeza (Fabaceae) Sci. Rep. 2017;7:40057. doi: 10.1038/srep40057. PubMed DOI PMC
Liu L., Yang Q.-F., Dong W.-S., Bi Y.-H., Zhou Z.-G. Characterization and physical mapping of nuclear ribosomal RNA (rRNA) genes in the haploid gametophytes of Saccharina japonica (Phaeophyta) J. Appl. Phycol. 2017;29:2695–2706. doi: 10.1007/s10811-017-1206-3. DOI
Ansari H. Molecular cytogenetic organization of 5S and 18S-26S rDNA loci in white clover (Trifolium repens L.) and related species. Ann. Bot. 1999;83:199–206. doi: 10.1006/anbo.1998.0806. DOI
Dluhošová J., Řepková J., Jakešová H., Nedělník J. Impact of interspecific hybridization of T. pratense × T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant. 2016;52:125–131. doi: 10.17221/115/2016-CJGPB. DOI
Garcia S., Kovařík A. Dancing together and separate again: Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Heredity. 2013;111:23–33. doi: 10.1038/hdy.2013.11. PubMed DOI PMC
Dubcovsky J., Dvorák J. Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics. 1995;140:1367–1377. doi: 10.1093/genetics/140.4.1367. PubMed DOI PMC
Rosato M., Kovařík A., Garilleti R., Rosselló J.A. Conserved organisation of 45S rDNA sites and rDNA gene copy number among major clades of early land plants. PLoS ONE. 2016;11:e0162544. doi: 10.1371/journal.pone.0162544. PubMed DOI PMC
She C.W., Wei L., Jiang X.H. Molecular cytogenetic characterization and comparison of the two cultivated Canavalia species (Fabaceae) Comp. Cytogenet. 2017;11:579–600. doi: 10.3897/compcytogen.v11i4.13604. PubMed DOI PMC
Li K.P., Wu Y.X., Zhao H., Wang Y., Lü X.M., Wang J.M., Xu Y., Li Z.Y., Han Y.H. Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol. Biol. 2016;16:85. doi: 10.1186/s12862-016-0656-6. PubMed DOI PMC
Jacobs M.D., Gardner R.C., Murray B.G. Cytological characterization of heterochromatin and rDNA in Pinus tadiata and P. taeda. Plant Syst. Evol. 2000;223:71–79. doi: 10.1007/BF00985327. DOI
Hizume M., Shibata F., Matsusaki Y., Garajova Z. Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor. Appl. Genet. 2002;105:491–497. doi: 10.1007/s00122-002-0975-4. PubMed DOI
Martínez J., Vargas P., Luceño M., Cuadrado Á. Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S, 45S) and trnL–trnF sequence analysis. Plant Syst. Evol. 2010;289:223–235. doi: 10.1007/s00606-010-0345-7. DOI
Mizuochi H., Marasek A., Okazaki K. Molecular cloning of Tulipa fosteriana rDNA and subsequent FISH analysis yields cytogenetic organization of 5S rDNA and 45S rDNA in T. gesneriana and T. fosteriana. Euphytica. 2007;155:235–248. doi: 10.1007/s10681-006-9325-y. DOI
Winterfeld G., Becher H., Voshell S., Hilu K., Röser M. Karyotype evolution in Phalaris (Poaceae): The role of reductional dysploidy, polyploidy and chromosome alteration in a wide-spread and diverse genus. PLoS ONE. 2018;13:e0192869. doi: 10.1371/journal.pone.0192869. PubMed DOI PMC
Fukushima K., Imamura K., Nagano K., Hoshi Y. Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae) J. Plant Res. 2011;124:231–244. doi: 10.1007/s10265-010-0366-x. PubMed DOI PMC
Olanj N., Garnatje T., Sonboli A., Vallès J., Garcia S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): A cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC Plant Biol. 2015;15:174. doi: 10.1186/s12870-015-0564-8. PubMed DOI PMC
Vozárová R., Herklotz V., Kovařík A., Tynkevich Y.O., Volkov R.A., Ritz C.M., Lunerová J. Ancient origin of two 5S rDNA families dominating in the genus Rosa and their behavior in the canina-type meiosis. Front. Plant Sci. 2021;12:643548. doi: 10.3389/fpls.2021.643548. PubMed DOI PMC
Liu B., Davis T.M. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) BMC Plant Biol. 2011;11:157. doi: 10.1186/1471-2229-11-157. PubMed DOI PMC
Garcia S., Kovařík A., Leitch A.R., Garnatje T. Cytogenetic features of rRNA genes across land plants: Analysis of the plant rDNA database. Plant J. 2017;89:1020–1030. doi: 10.1111/tpj.13442. PubMed DOI
Weiss-Schneeweiss H., Tremetsberger K., Schneeweiss G.M., Parker J.S., Stuessy T.F. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann. Bot. 2008;101:909–918. doi: 10.1093/aob/mcn023. PubMed DOI PMC
Dadejová M., Lim K.Y., Soucková-Skalická K., Matyášek R., Grandbastien M., Leitch A., Kovařík A. Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol. 2007;174:658–668. doi: 10.1111/j.1469-8137.2007.02034.x. PubMed DOI
Rosato M., Álvarez I., Nieto Feliner G., Rosselló J.A. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae) PLoS ONE. 2017;12:e0187131. doi: 10.1371/journal.pone.0187131. PubMed DOI PMC
Matyášek R., Renny-Byfield S., Fulneček J., Macas J., Grandbastien M.-A., Nichols R., Leitch A., Kovařík A. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genom. 2012;13:722. doi: 10.1186/1471-2164-13-722. PubMed DOI PMC
Lunerová J., Renny-Byfield S., Matyášek R., Leitch A., Kovařík A. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst. Evol. 2017;303:1043–1060. doi: 10.1007/s00606-017-1442-7. DOI
Marques A., Moraes L., Aparecida dos Santos M., Costa I., Costa L., Nunes T., Melo N., Simon M.F., Leitch A.R., Almeida C., et al. Origin and parental genome characterization of the allotetraploid Stylosanthes scabra Vogel (Papilionoideae, Leguminosae), an important legume pasture crop. Ann. Bot. 2018;122:1143–1159. doi: 10.1093/aob/mcy113. PubMed DOI PMC
Yan H.H., Mudge J., Kim D.-J., Shoemaker R.C., Cook D.R., Young N.D. Comparative physical mapping reveals features of microsynteny between Glycine max, Medicago truncatula, and Arabidopsis thaliana. Genome. 2004;47:141–155. doi: 10.1139/g03-106. PubMed DOI
Fonsêca A., Ferreira J., dos Santos T.R.B., Mosiolek M., Bellucci E., Kami J., Gepts P., Geffroy V., Schweizer D., dos Santos K.G.B., et al. Cytogenetic map of common bean (Phaseolus vulgaris L.) Chromosome Res. 2010;18:487–502. doi: 10.1007/s10577-010-9129-8. PubMed DOI PMC
Susek K., Bielski W.K., Hasterok R., Naganowska B., Wolko B. A first glimpse of wild lupin karyotype variation as revealed by comparative cytogenetic mapping. Front. Plant Sci. 2016;7:1152. doi: 10.3389/fpls.2016.01152. PubMed DOI PMC
Wyrwa K., Książkiewicz M., Szczepaniak A., Susek K., Podkowiński J., Naganowska B. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Res. 2016;24:355–378. doi: 10.1007/s10577-016-9526-8. PubMed DOI PMC
Du P., Li L., Liu H., Fu L., Qin L., Zhang Z., Cui C., Sun Z., Han S., Xu J., et al. High-resolution chromosome painting with repetitive and single-copy oligonucleotides in Arachis species identifies structural rearrangements and genome differentiation. BMC Plant Biol. 2018;18:240. doi: 10.1186/s12870-018-1468-1. PubMed DOI PMC
Devi J., Ko J.M., Seo B.B. FISH and GISH: Modern cytogenetic techniques. Indian J. Biotechnol. 2005;4:307–315.
Pellerin R.J., Waminal N.E., Kim H.H. FISH mapping of rDNA and telomeric repeats in 10 Senna species. Hortic. Environ. Biotechnol. 2019;60:253–260. doi: 10.1007/s13580-018-0115-y. DOI
Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Lysák M.A., Mandáková T. Analysis of plant meiotic chromosomes by chromosome painting. Methods Mol. Biol. 2013;990:13–24. doi: 10.1007/978-1-62703-333-6_2. PubMed DOI
Kirov I., Divashuk M., Van Laere K., Soloviev A., Khrustaleva L. An easy “SteamDrop” method for high quality plant chromosome preparation. Mol. Cytogenet. 2014;7:21. doi: 10.1186/1755-8166-7-21. PubMed DOI PMC
Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Harpke D., Peterson A. 5.8S motifs for the identification of pseudogenic ITS regions. Botany. 2008;86:300–305. doi: 10.1139/B07-134. DOI
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC
UNAFold. [(accessed on 12 November 2020)]. Available online: http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3.
Hřibová E., Čížková J., Christelová P., Taudien S., de Langhe E., Doležel J. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE. 2011;6:e17863. doi: 10.1371/journal.pone.0017863. PubMed DOI PMC
Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)