Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MUNI/A/1522/2020
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34834880
PubMed Central
PMC8621578
DOI
10.3390/plants10112518
PII: plants10112518
Knihovny.cz E-zdroje
- Klíčová slova
- chromosomal markers, clover, cytogenetics, genome size, interspecific hybridization, polyploidy, synteny,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.
Department of Experimental Biology Faculty of Sciences Masaryk University 611 37 Brno Czech Republic
Zobrazit více v PubMed
Zohary M., Heller D. The Genus Trifolium. 1st ed. Israel Academy of Sciences and Humanities; Jerusalem, Israel: 1984. pp. 1–610.
Gillet J.M., Taylor N.L. The World of Clovers. 1st ed. Iowa State University Press; Ames, IA, USA: 2001. pp. 1–457.
Ellison N.W., Liston A., Steiner J.J., Williams W.M., Taylor N.L. Molecular phylogenetics of the clover genus (Trifolium-Leguminosae) Mol. Phylogenet. Evol. 2006;39:688–705. doi: 10.1016/j.ympev.2006.01.004. PubMed DOI
Zohary M. Origin and evolution in the genus Trifolium. Bot. Notiser. 1972;125:501–511.
Taylor N.L. Clovers Around the World. In: Taylor N.L., editor. Agronomy Monographs. Vol. 25. Soil Science Society of America; Madison, WI, USA: 1985. pp. 1–6.
Panitsa M., Trigas P., Iatrou G., Sfenthourakis S. Factors affecting plant species richness and endemism on land-bridge islands—An example from the East Aegean Archipelago. Acta Oceol. 2010;36:431–437. doi: 10.1016/j.actao.2010.04.004. DOI
Scoppola A., Tirado J.L., Gutiérrez F.M., Magrini S. The genus Trifolium (Fabaceae) in South Europe: A critical review on species richness and distribution. Nord. J. Bot. 2018;36:e01723. doi: 10.1111/njb.01723. DOI
Boissier E. Flora Orientalis. H. Georg; Basileae, Switzerland: 1872. Trifolium; pp. 110–156.
Hossain M. A revision of Trifolium in the nearer East. Notes R. Bot. Gard. Edinb. 1961;23:387–481.
Lavin M., Doyle J.J., Palmer J.D. Evolutionary significance of the loss of the chloroplast-DNA inverted repeat in the Leguminosae subfamily Papilionoideae. Evolution. 1990;44:390–402. PubMed
Liston A. Use of the polymerase chain reaction to survey for the loss of the inverted repeat in the legume chloroplast genome. In: Crisp M.D., Doyle J.J., editors. Advances in Legume Systematics. Vol. 7. Royal Botanic Gardens; Kew, UK: 1995. pp. 31–40.
Watson L.E., Sayed-Ahmed H., Badr A. Molecular phylogeny of Old World Trifolium (Fabaceae) Plant Syst. Evol. 2000;224:153–171. doi: 10.1007/BF00986340. DOI
Steele K., Wojciechowski M. Phylogenetic analyses of tribes Trifolieae and Vicieae, based on sequences of the plastid gene matK (Papilionoideae: Leguminosae) Adv. Legume Syst. 2003;1:355–370.
Sveinsson S., Cronk Q. Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium) BMC Evol. Biol. 2014;14:228. doi: 10.1186/s12862-014-0228-6. PubMed DOI PMC
Kintl A., Elbl J., Lošák T., Vaverková M., Nedělník J. Mixed intercropping of wheat and white clover to enhance the sustainability of the conventional cropping system: Effects on biomass production and leaching of mineral nitrogen. Sustainability. 2018;10:3367. doi: 10.3390/su10103367. DOI
SanMiguel P., Tikhonov A., Jin Y.-K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z., et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–768. doi: 10.1126/science.274.5288.765. PubMed DOI
Kim J.-S., Islam-Faridi M.N., Klein P.E., Stelly D.M., Price H.J., Klein R.R., Mullet J.E. Comprehensive molecular cytogenetic analysis of sorghum genome architecture: Distribution of euchromatin, heterochromatin, genes and recombination in comparison to cice. Genetics. 2005;171:1963–1976. doi: 10.1534/genetics.105.048215. PubMed DOI PMC
Piegu B., Guyot R., Picault N., Roulin A., Saniyal A., Kim H., Collura K., Brar D.S., Jackson S., Wing R.A., et al. Doubling genome size without polyploidization: Dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–1269. doi: 10.1101/gr.5290206. PubMed DOI PMC
Schubert I. Chromosome Evolution. Curr. Opin. Plant Biol. 2007;10:109–115. doi: 10.1016/j.pbi.2007.01.001. PubMed DOI
Heslop-Harrison J.S.P., Schwarzacher T. Organisation of the plant genome in chromosomes: Organisation of the plant genome in chromosomes. Plant J. 2011;66:18–33. doi: 10.1111/j.1365-313X.2011.04544.x. PubMed DOI
Feldman M., Liu B., Segal G., Abbo S., Levy A.A., Vega J.M. Rapid elimination of low-copy dna sequences in polyploid wheat: A possible mechanism for differentiation of homoeologous chromosomes. Genetics. 1997;147:1381–1387. doi: 10.1093/genetics/147.3.1381. PubMed DOI PMC
Hegarty M.J., Hiscock S.J. Hybrid speciation in plants: New insights from molecular studies. New Phytol. 2005;165:411–423. doi: 10.1111/j.1469-8137.2004.01253.x. PubMed DOI
Wendel J.F., Schnabel A., Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium) Proc. Natl. Acad. Sci. USA. 1995;92:280–284. doi: 10.1073/pnas.92.1.280. PubMed DOI PMC
Plant DNA C-Value Database. [(accessed on 20 August 2021)]. Available online: https://cvalues.science.kew.org/
Taylor N.L., Quesenberry K.H., Anderson M.K. Genetic system relationships in Trifolium. Econ. Bot. 1979;33:431–441. doi: 10.1007/BF02858339. DOI
Index to Plant Chromosome Numbers. [(accessed on 3 June 2021)]. Available online: http://legacy.tropicos.org/Project/IPCN.
Salimpour F., Sharifnia F., Mostafavi G., Hajrasoliha S., Ukhneh E. chromosome counts and determination of ploid levels in iranian species of Trifolium. Chromosome Bot. 2008;3:53–63. doi: 10.3199/iscb.3.53. DOI
Uslu E. Karyology of Nine Trifolium L. Taxa from Turkey. Caryologia. 2012;65:304–310. doi: 10.1080/00087114.2012.752925. DOI
Chromosome Counts Database. [(accessed on 20 August 2021)]. Available online: http://ccdb.tau.ac.il/
Vižintin L., Javornik B., Bohanec B. Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 2006;170:859–866. doi: 10.1016/j.plantsci.2005.12.007. DOI
Vozárová R., Macková E., Vlk D., Řepková J. Variation in ribosomal DNA in the genus Trifolium (Fabaceae) Plants. 2021;10:1771. doi: 10.3390/plants10091771. PubMed DOI PMC
Lawrence M. Population Genetics of the homomorphic self-incompatibility polymorphisms in flowering plants. Ann. Bot.-Lond. 2000;85:221–226. doi: 10.1006/anbo.1999.1044. DOI
Abberton M.T. Interspecific hybridization in the genus Trifolium. Plant Breed. 2007;126:337–342. doi: 10.1111/j.1439-0523.2007.01374.x. DOI
Williams W.M., Ellison N.W., Ansari H.A., Verry I.M., Hussain S. Experimental evidence for the ancestry of allotetraploid Trifolium repens and creation of synthetic forms with value for plant breeding. BMC Plant Biol. 2012;12:55. doi: 10.1186/1471-2229-12-55. PubMed DOI PMC
Egan L.M., Hofmann R.W., Ghamkhar K., Hoyos-Villegas V. Prospects for Trifolium improvement through germplasm characterisation and pre-breeding in New Zealand and beyond. Front. Plant Sci. 2021;12:653191. doi: 10.3389/fpls.2021.653191. PubMed DOI PMC
Abdalla M.M.F. Inbreeding and fertility in egyptian clover, Trifolium alexandrinum. J. Pharmacogn. Phytother. 2012;4:16–25.
Schifino M.T., Moreas-Fernandes M.I.B. Cytological comparision of diploid and autotetraploid Trifolium riograndense Burkart (Leguminosae) Rev. Bras. Genet. IX. 1986;4:637–643.
Schifino-Wittmann M.T., Moraes-Fernandes B. Chromosome numbers, karyotypes and meiotic behavior of populations of some Trifolium (Leguminosae) species. Rev. Brazil Genet. 1988;11:379–390.
Sheidai M., Hamta A., Mofidabadi A.J., NooriDaloii M.R. Karyotypic study of Trifolium species and cultivars in Iran. J. Sci. Islam. Repub. Iran. 1998;9:215–222.
Khatoon S., Ali S.I. Chromosome numbers and polyploidy in the legumes of Pakistan. Pak. J. Bot. 2006;38:935–945.
Conterato I.F., Schifino-Wittmann M.T., Dall′Agnol M. Seed dimorphism, chromosome number and karyotype of the amphicarpic species Trifolium argentinense Speg. Genet. Resour. Crop. Evol. 2010;57:727–731. doi: 10.1007/s10722-009-9508-1. DOI
Isobe S., Klimenko I., Ivashuta S., Gau M., Kozlov N.N. First RFLP linkage map of red clover (Trifolium pratense L.) based on cDNA probes and its transferability to other red clover germplasm. Theor. Appl. Genet. 2003;108:105–112. doi: 10.1007/s00122-003-1412-z. PubMed DOI
Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y., Kaneko T., Sakurai N., Okumura K., Klimenko I., et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.) DNA Res. 2005;12:301–364. doi: 10.1093/dnares/dsi018. PubMed DOI
Isobe S., Kolliker R., Hisano H., Sasamoto S., Wada T., Klimenko I., Okumura K., Tabata S. Construction of a consensus linkage map for red clover (Trifolium pratense L.) BMC Plant Biol. 2009;9:57. doi: 10.1186/1471-2229-9-57. PubMed DOI PMC
Zhang Y., Sledge M.K., Bouton J.H. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor. Appl. Genet. 2007;114:1367–1378. doi: 10.1007/s00122-007-0523-3. PubMed DOI PMC
Ghamkhar K., Isobe S., Nichols P.G.H., Faithfull T., Ryan M.H., Snowball R., Sato S., Appels R. The first genetic maps for subterranean clover (Trifolium subterraneum L.) and comparative genomics with T. pratense L. and Medicago Truncatula Gaertn. to identify new molecular markers for breeding. Mol. Breed. 2012;30:213–226. doi: 10.1007/s11032-011-9612-8. DOI
Isobe S.N., Hisano H., Sato S., Hirakawa H., Okumura K., Shirasawa K., Sasamoto S., Watanabe A., Wada T., Kishida Y., et al. Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover (Trifolium repens L.) G3-Genes Genomes Genet. 2012;2:607–617. doi: 10.1534/g3.112.002600. PubMed DOI PMC
Jones E.S., Hughes L.J., Drayton M.C., Abberton M.T., Michaelson-Yeates T.P.T., Bowen C., Forster J.W. An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.) Plant Sci. 2003;165:531–539. doi: 10.1016/S0168-9452(03)00212-7. DOI
Barrett B., Griffiths A., Schreiber M., Ellison N., Mercer C., Bouton J., Ong B., Forster J., Sawbridge T., Spangenberg G., et al. a microsatellite map of white clover. Theor. Appl. Genet. 2004;109:596–608. doi: 10.1007/s00122-004-1658-0. PubMed DOI
Griffiths A.G., Barrett B.A., Simon D., Khan A.K., Bickerstaff P., Anderson C.B., Franzmayr B.K., Hancock K.R., Jones C.S. An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago. BMC Genom. 2013;14:388. doi: 10.1186/1471-2164-14-388. PubMed DOI PMC
Ištvánek J., Jaroš M., Křenek A., Řepková J. Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae) Am. J. Bot. 2014;101:327–337. doi: 10.3732/ajb.1300340. PubMed DOI
De Vega J.J., Ayling S., Hegarty M., Kudrna D., Goicoechea J.L., Ergon Å., Rognli O.A., Jones C., Swain M., Geurts R., et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 2015;5:17394. doi: 10.1038/srep17394. PubMed DOI PMC
Young N.D., Debellé F., Oldroyd G.E.D., Geurts R., Cannon S.B., Udvardi M.K., Benedito V.A., Mayer K.F.X., Gouzy J., Schoof H., et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature. 2011;480:520–524. doi: 10.1038/nature10625. PubMed DOI PMC
Dluhošová J., Ištvánek J., Nedělník J., Řepková J. Red clover (Trifolium pratense) and zigzag clover (T. medium)—A picture of genomic similarities and differences. Front. Plant. Sci. 2018;9:724. doi: 10.3389/fpls.2018.00724. PubMed DOI PMC
Hirakawa H., Kaur P., Shirasawa K., Nichols P., Nagano S., Appels R., Erskine W., Isobe S.N. Draft genome sequence of subterranean clover, a reference for genus Trifolium. Sci. Rep. 2016;6:30358. doi: 10.1038/srep30358. PubMed DOI PMC
Griffiths A.G., Moraga R., Tausen M., Gupta V., Bilton T.P., Campbell M.A., Ashby R., Nagy I., Khan A., Larking A., et al. Breaking Free: The genomics of allopolyploidy-facilitated niche expansion in white clover. Plant Cell. 2019;31:1466–1487. doi: 10.1105/tpc.18.00606. PubMed DOI PMC
Evans A.M. Clovers. In: Simmonds N.W., editor. Evolution of Crop Plants. 1st ed. Vol. 4. Longman; London, UK: 1976. pp. 79–98.
Ansari H.A., Ellison N.W., Williams W.M. Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae) Chromosoma. 2008;117:159–167. doi: 10.1007/s00412-007-0134-4. PubMed DOI
Neumann P., Navrátilová A., Schroeder-Reiter E., Koblížková A., Steinbauerová V., Chocholová E., Novák P., Wanner G., Macas J. Stretching the rules: Monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012;8:e1002777. doi: 10.1371/journal.pgen.1002777. PubMed DOI PMC
Macas J., Novák P., Pellicer J., Čížková J., Koblížková A., Neumann P., Fuková I., Doležel J., Kelly L.J., Leitch I.J. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC
Ávila Robledillo L., Koblížková A., Novák P., Böttinger K., Vrbová I., Neumann P., Schubert I., Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 2018;8:5838. doi: 10.1038/s41598-018-24196-3. PubMed DOI PMC
Taylor N.L., Quesenberry K.H. Red Clover Science. Vol. 28 Kluwer Academic; Dordrecht, The Netherlands: 1996.
Williams W.M. Trifolium interspecific hybridisation: Widening the white clover gene pool. Crop Pasture Sci. 2014;65:1091. doi: 10.1071/CP13294. DOI
Řepková J., Nedbálková B., Holub J. Regeneration of plants from zygotic embryos after interspecific hybridization within the genus Trifolium and electrophoretic evaluation of hybrids. Sci. Stud. Res. Inst. Fodd. Plants. 1991;12:7–14.
Řepkova J., Jungmannová B., Jakešová H. Identification of barriers to interspecific crosses in the genus Trifolium. Euphytica. 2006;151:39–48. doi: 10.1007/s10681-006-9126-3. DOI
Fuchs J., Strehl S., Brandes A., Schweizer D., Schubert I. Molecular-cytogenetic characterization of the Vicia faba genome—Heterochromatin differentiation, replication patterns and sequence localization. Chromosome Res. 1998;6:219–230. doi: 10.1023/A:1009215802737. PubMed DOI
Fuchs J., Kühne M., Schubert I. Assignment of linkage groups to pea chromosomes after karyotyping and gene mapping by fluorescent in situ hybridization. Chromosoma. 1998;107:272–276. doi: 10.1007/s004120050308. PubMed DOI
Kataoka R., Hara M., Kato S., Isobe S., Sato S., Tabata S., Ohmido N. Integration of linkage and chromosome maps of red clover (Trifolium pratense L.) Cytogenet. Genome Res. 2012;137:60–69. doi: 10.1159/000339509. PubMed DOI
De Oliveira Bustamante F., do Nascimento T.H., Montenegro C., Dias S., do Vale Martins L., Braz G.T., Benko-Iseppon A.M., Jiang J., Pedrosa-Harand A., Brasileiro-Vidal A.C. Oligo-FISH barcode in beans: A new chromosome identification system. Theor. Appl. Genet. 2021;134:3675–3686. doi: 10.1007/s00122-021-03921-z. PubMed DOI
Montenegro C., do Vale Martins L., de Oliveira Bustamante F., Brasileiro-Vidal A.C., Pedrosa-Harand A. Comparative cytogenomics reveals genome reshuffling and centromere repositioning in the legume tribe Phaseoleae. bioRxiv. 2021 doi: 10.1101/2021.08.06.455448. PubMed DOI
Biscotti M.A., Olmo E., Heslop-Harrison J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Flavell R.B. The structure and control of expression of ribosomal RNA genes. Oxf. Surv. Plant Mol. Cell Biol. 1986;3:251–274.
Dvořák J., Zhang H.-B., Kota R.S., Lassner M. Organization and evolution of the 5S ribosomal rna gene family in wheat and related species. Genome. 1989;32:1003–1016. doi: 10.1139/g89-545. DOI
Schubert I., Wobus U. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma. 1985;92:143–148. doi: 10.1007/BF00328466. DOI
Raina S.N., Mukai Y. Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome. 1999;42:52–59. doi: 10.1139/g98-092. DOI
Pedrosa-Harand A., de Almeida C.C.S., Mosiolek M., Blair M.W., Schweizer D., Guerra M. Extensive ribosomal DNA amplification during andean common bean (Phaseolus vulgaris L.) evolution. Theor. Appl. Genet. 2006;112:924–933. doi: 10.1007/s00122-005-0196-8. PubMed DOI
Chung M.-C., Lee Y.-I., Cheng Y.-Y., Chou Y.-J., Lu C.-F. Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 2008;116:745–753. doi: 10.1007/s00122-007-0705-z. PubMed DOI PMC
Roa F., Guerra M. Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol. Biol. 2012;12:225. doi: 10.1186/1471-2148-12-225. PubMed DOI PMC
Roa F., Guerra M. Non-Random Distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 2015;146:243–249. doi: 10.1159/000440930. PubMed DOI
Dluhošová J., Řepková J., Jakešová H., Nedělník J. Impact of interspecific hybridization of T. pratense × T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant. 2016;52:125–131. doi: 10.17221/115/2016-CJGPB. DOI
Falistocco E., Marconi G., Falcinelli M. Comparative cytogenetic study on Trifolium subterraneum (2n = 16) and Trifolium israeliticum (2n = 12) Genome. 2013;56:307–313. doi: 10.1139/gen-2013-0055. PubMed DOI
Ansari H. Molecular cytogenetic organization of 5S and 18S-26S rDNA loci in white clover (Trifolium repens L.) and related species. Ann. Bot. Lond. 1999;83:199–206. doi: 10.1006/anbo.1998.0806. DOI
Vicient C.M., Suoniemi A., Anamthawat-Jonsson K., Tanskanen J., Beharav A., Nevo E., Schulman A.H. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. The Plant Cell. 1999;11:1769. doi: 10.1105/tpc.11.9.1769. PubMed DOI PMC
Macas J., Neumann P., Navrátilová A. Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom. 2007;8:427. doi: 10.1186/1471-2164-8-427. PubMed DOI PMC
Macas J., Kejnovský E., Neumann P., Novák P., Koblížková A., Vyskot B. Next generation sequencing-based analysis of repetitive DNA in the model dioecious [corrected] plant Silene latifolia. PLoS ONE. 2011;6:e27335. doi: 10.1371/annotation/4ccaacb2-92d7-445a-87da-313cedf18feb. PubMed DOI PMC
Tenaillon M.I., Hufford M.B., Gaut B.S., Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol. Evol. 2011;3:219–229. doi: 10.1093/gbe/evr008. PubMed DOI PMC
Piednoël M., Aberer A.J., Schneeweiss G.M., Macas J., Novak P., Gundlach H., Temsch E.M., Renner S.S. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol. Biol. Evol. 2012;29:3601–3611. doi: 10.1093/molbev/mss168. PubMed DOI PMC
Novák P., Hřibová E., Neumann P., Koblížková A., Doležel J., Macas J. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE. 2014;9:e98918. doi: 10.1371/journal.pone.0098918. PubMed DOI PMC
Neumann P., Koblížková A., Navrátilová A., Macas J. Significant expansion of Vicia Pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. doi: 10.1534/genetics.106.056259. PubMed DOI PMC
Kulikova O., Gualtieri G., Geurts R., Kim D.-J., Cook D., Huguet T., De Jong J.H., Fransz P.F., Bisseling T. Integration of the FISH pachytene and genetic maps of Medicago truncatula: FISH pachytene and genetic maps of M. truncatula. Plant J. 2001;27:49–58. doi: 10.1046/j.1365-313x.2001.01057.x. PubMed DOI
Lin J.-Y., Jacobus B.H., SanMiguel P., Walling J.G., Yuan Y., Shoemaker R.C., Young N.D., Jackson S.A. Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics. 2005;170:1221–1230. doi: 10.1534/genetics.105.041616. PubMed DOI PMC
Jiang J., Birchler J.A., Parrott W.A., Kelly Dawe R. A molecular view of plant centromeres. Trends Plant Sci. 2003;8:570–575. doi: 10.1016/j.tplants.2003.10.011. PubMed DOI
Zhu J., Ellison N., Rowland R. Chromosomal localization of a tandemly repeated DNA sequence in Trifolium repens L. Cell Res. 1996;6:39–46. doi: 10.1038/cr.1996.5. DOI
Bucknell T.T. Master’s Thesis. Massey University; Palmerston North, New Zealand: 1999. Comparative cytogenetics in the genus Trifolium section Trifolium (clover)
Ansari H.A., Ellison N.W., Griffiths A.G., Williams W.M. A lineage-specific centromeric satellite sequence in the genus Trifolium. Chromosome Res. 2004;12:357–367. doi: 10.1023/B:CHRO.0000034099.19570.b7. PubMed DOI
Fry K., Salser W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of Similar sequences in other rodents. Cell. 1977;12:1069–1084. doi: 10.1016/0092-8674(77)90170-2. PubMed DOI
Galasso I., Schmidt T., Pignone D., Heslop-Harrison J.S. The molecular cytogenetics of Vigna unguiculata (L.) Walp: The physical organization and characterization of 18S-5.8S-25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theoret. Appl. Genet. 1995;91:928–935. doi: 10.1007/BF00223902. PubMed DOI
Gill N., Findley S., Walling J.G., Hans C., Ma J., Doyle J., Stacey G., Jackson S.A. Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol. 2009;151:1167–1174. doi: 10.1104/pp.109.137935. PubMed DOI PMC
Findley S.D., Cannon S., Varala K., Du J., Ma J., Hudson M.E., Birchler J.A., Stacey G. A fluorescence in situ hybridization system for karyotyping soybean. Genetics. 2010;185:727–744. doi: 10.1534/genetics.109.113753. PubMed DOI PMC
Tek A.L., Kashihara K., Murata M., Nagaki K. Functional Centromeres in Soybean Include Two Distinct Tandem Repeats and a Retrotransposon. Chromosome Res. 2010;18:337–347. doi: 10.1007/s10577-010-9119-x. PubMed DOI
Zatloukalová P., Hřibová E., Kubaláková M., Suchánková P., Šimková H., Adoración C., Kahl G., Millán T., Doležel J. Integration of genetic and physical maps of the chickpea (Cicer arietinum L.) genome using flow-sorted chromosomes. Chromosome Res. 2011;19:729–739. doi: 10.1007/s10577-011-9235-2. PubMed DOI
Iwata A., Tek A.L., Richard M.M.S., Abernathy B., Fonsêca A., Schmutz J., Chen N.W.G., Thareau V., Magdelenat G., Li Y., et al. Identification and characterization of functional centromeres of the common bean. Plant J. 2013;76:47–60. doi: 10.1111/tpj.12269. PubMed DOI
Yu F., Dou Q., Liu R., Wang H. A conserved repetitive DNA element located in the centromeres of chromosomes in Medicago genus. Genes Genom. 2017;39:903–911. doi: 10.1007/s13258-017-0556-1. DOI
Karafiátová M., Bartoš J., Kopecký D., Ma L., Sato K., Houben A., Stein N., Doležel J. Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res. 2013;21:739–751. doi: 10.1007/s10577-013-9380-x. PubMed DOI
Danilova T.V., Friebe B., Gill B.S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor. Appl. Genet. 2014;127:715–730. doi: 10.1007/s00122-013-2253-z. PubMed DOI PMC
Ebeed H.T. Wheat Production in Changing Environments. Springer; Singapore: 2019. Omics approaches for developing abiotic stress tolerance in wheat.
Simpson P.R., Newman M.-A., Davies D.R. Detection of legumin gene DNA sequences in pea by in situ hybridization. Chromosoma. 1988;96:454–458. doi: 10.1007/BF00303040. DOI
Schaff D.A., Koehler S.M., Matthews B.F., Bauchan G.R. In situ hybridization of β-tubulin to alfalfa chromosomes. J. Hered. 1990;81:480–483. doi: 10.1093/oxfordjournals.jhered.a111029. DOI
Danilova T.V., Birchler J.A. Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: Resolution, sensitivity, and banding paint development. Chromosoma. 2008;117:345–356. doi: 10.1007/s00412-008-0151-y. PubMed DOI
Jiang J., Gill B.S., Wang G.L., Ronald P.C., Ward D.C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc. Natl. Acad. Sci. USA. 1995;92:4487–4491. doi: 10.1073/pnas.92.10.4487. PubMed DOI PMC
Lapitan N.L.V., Brown S.E., Kennard W., Stephens J.L., Knudson D.L. FISH physical mapping with barley BAC clones. Plant J. 1997;11:149–156. doi: 10.1046/j.1365-313X.1997.11010149.x. DOI
Peterson D.G., Lapitan N.L., Stack S.M. Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH) Genetics. 1999;152:427–439. doi: 10.1093/genetics/152.1.427. PubMed DOI PMC
Zhong X.-B., Bodeau J., Fransz P.F., Williamson V.M., van Kammen A., de Jong J.H., Zabel P. FISH to meiotic pachytene chromosomes of tomato locates the root-knot nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively: Theor. Appl. Genet. 1999;98:365–370. doi: 10.1007/s001220051081. DOI
Islam-Faridi M.N., Childs K.L., Klein P.E., Hodnett G., Menz M.A., Klein R.R., Rooney W.L., Mullet J.E., Stelly D.M., Price H.J. A molecular cytogenetic map of sorghum Chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics. 2002;161:345–353. doi: 10.1093/genetics/161.1.345. PubMed DOI PMC
Lee H.-R., Eom E.-M., Lim Y.-P., Bang J.-W., Lee D.-H. Construction of a garlic BAC library and chromosomal assignment of BAC clones using the FISH technique. Genome. 2003;46:514–520. doi: 10.1139/g03-012. PubMed DOI
Schnabel E., Kulikova O., Penmetsa R.V., Bisseling T., Cook D.R., Frugoli J. An integrated physical, genetic and cytogenetic map around the sunn locus of Medicago truncatula. Genome. 2003;46:665–672. doi: 10.1139/g03-019. PubMed DOI
Pedrosa A., Sandal N., Stougaard J., Schweizer D., Bachmair A. Chromosomal map of the model legume Lotus japonicus. Genetics. 2002;161:1661–1672. doi: 10.1093/genetics/161.4.1661. PubMed DOI PMC
Pedrosa-Harand A., Kami J., Gepts P., Geffroy V., Schweizer D. Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosome Res. 2009;17:405–417. doi: 10.1007/s10577-009-9031-4. PubMed DOI
Fonsêca A., Ferreira J., dos Santos T.R.B., Mosiolek M., Bellucci E., Kami J., Gepts P., Geffroy V., Schweizer D., dos Santos K.G.B., et al. Cytogenetic map of common bean (Phaseolus vulgaris L.) Chromosome Res. 2010;18:487–502. doi: 10.1007/s10577-010-9129-8. PubMed DOI PMC
Schubert I., Fransz P.F., Fuchs J., de Jong J.H. Chromosome painting in plants. Method Cell Sci. 2001;23:57–69. doi: 10.1023/A:1013137415093. PubMed DOI
Lysak M.A., Fransz P.F., Ali H.B., Schubert I. Chromosome painting in Arabidopsis thaliana. Plant J. 2001;28:689–697. doi: 10.1046/j.1365-313x.2001.01194.x. PubMed DOI
Pecinka A., Schubert V., Meister A., Kreth G., Klatte M., Lysak M.A., Fuchs J., Schubert I. Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma. 2004;113:258–269. doi: 10.1007/s00412-004-0316-2. PubMed DOI
Betekhtin A., Jenkins G., Hasterok R. Reconstructing the evolution of Brachypodium genomes using comparative chromosome painting. PLoS ONE. 2014;9:e115108. doi: 10.1371/journal.pone.0115108. PubMed DOI PMC
Iovene M., Wielgus S.M., Simon P.W., Buell C.R., Jiang J. Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics. 2008;180:1307–1317. doi: 10.1534/genetics.108.093179. PubMed DOI PMC
Amarillo F.I.E., Bass H.W. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) Pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics. 2007;177:1509–1526. doi: 10.1534/genetics.107.080846. PubMed DOI PMC
Han Y., Zhang T., Thammapichai P., Weng Y., Jiang J. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics. 2015;200:771–779. doi: 10.1534/genetics.115.177642. PubMed DOI PMC
Braz G.T., He L., Zhao H., Zhang T., Semrau K., Rouillard J.-M., Torres G.A., Jiang J. Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics. 2018;208:513–523. doi: 10.1534/genetics.117.300344. PubMed DOI PMC
Qu M., Li K., Han Y., Chen L., Li Z., Han Y. Integrated karyotyping of woodland strawberry (Fragaria vesca) with oligopaint FISH probes. Cytogenet. Genome Res. 2017;153:158–164. doi: 10.1159/000485283. PubMed DOI
Albert P.S., Zhang T., Semrau K., Rouillard J.-M., Kao Y.-H., Wang C.-J.R., Danilova T.V., Jiang J., Birchler J.A. Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc. Natl. Acad. Sci. USA. 2019;116:1679–1685. doi: 10.1073/pnas.1813957116. PubMed DOI PMC
Liu X., Sun S., Wu Y., Zhou Y., Gu S., Yu H., Yi C., Gu M., Jiang J., Liu B., et al. Dual-color oligo-FISH can reveal chromosomal variations and evolution in Oryza species. Plant J. 2020;101:112–121. doi: 10.1111/tpj.14522. PubMed DOI
Šimoníková D., Němečková A., Karafiátová M., Uwimana B., Swennen R., Doležel J., Hřibová E. Chromosome painting facilitates anchoring reference genome sequence to chromosomes in situ and integrated karyotyping in banana (Musa spp.) Front. Plant Sci. 2019;10:1503. doi: 10.3389/fpls.2019.01503. PubMed DOI PMC
Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2021;105:978–993. doi: 10.1111/tpj.15081. PubMed DOI
Do Vale Martins L., de Oliveira Bustamante F., da Silva Oliveira A.R., da Costa A.F., de Lima Feitoza L., Liang Q., Zhao H., Benko-Iseppon A.M., Muñoz-Amatriaín M., Pedrosa-Harand A., et al. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma. 2021;130:133–147. doi: 10.1007/s00412-021-00758-9. PubMed DOI
Du P., Cui C., Liu H., Fu L., Li L., Dai X., Qin L., Wang S., Han S., Xu J., et al. Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. Plant Methods. 2019;15:69. doi: 10.1186/s13007-019-0451-7. PubMed DOI PMC
Bonifácio E.M., Fonsêca A., Almeida C., Dos Santos K.G.B., Pedrosa-Harand A. Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) Theor. Appl. Genet. 2012;124:1513–1520. doi: 10.1007/s00122-012-1806-x. PubMed DOI