Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
- MeSH
- Induced Pluripotent Stem Cells metabolism MeSH
- Humans MeSH
- Mutation, Missense * MeSH
- Mutation MeSH
- Vesicular Transport Proteins * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- Adult MeSH
- Epigenesis, Genetic MeSH
- Epigenomics MeSH
- Gene Fusion * MeSH
- Genetic Predisposition to Disease MeSH
- Genomics MeSH
- Immunohistochemistry MeSH
- Polymorphism, Single Nucleotide MeSH
- Juxtaglomerular Apparatus pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics pathology chemistry MeSH
- Whole Genome Sequencing MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
PURPOSE: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome, or panel sequencing data sets aligned to a GRCh37, GRCh38, or T2T reference genome. METHODS: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs. It uses these reads to determine whether an individual most likely has 0 functional copies of SMN1. RESULTS: We developed SMA Finder and evaluated it on 16,626 exomes and 3911 genomes from the Broad Institute Center for Mendelian Genomics, 1157 exomes and 8762 panel samples from Tartu University Hospital, and 198,868 exomes and 198,868 genomes from the UK Biobank. SMA Finder's false-positive rate was below 1 in 200,000 samples, its positive predictive value was greater than 96%, and its true-positive rate was 29 out of 29. Most of these SMA diagnoses had initially been clinically misdiagnosed as limb-girdle muscular dystrophy. CONCLUSION: Our extensive evaluation of SMA Finder on exome, genome, and panel sequencing samples found it to have nearly 100% accuracy and demonstrated its ability to reduce diagnostic delays, particularly in individuals with milder subtypes of SMA. Given this accuracy, the common misdiagnoses identified here, the widespread availability of clinical confirmatory testing for SMA, and the existence of treatment options, we propose that it is time to add SMN1 to the American College of Medical Genetics list of genes with reportable secondary findings after genome and exome sequencing.
- MeSH
- Algorithms MeSH
- Exome genetics MeSH
- Genome, Human genetics MeSH
- Genomics methods MeSH
- Humans MeSH
- Survival of Motor Neuron 1 Protein genetics MeSH
- Survival of Motor Neuron 2 Protein genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Exome Sequencing MeSH
- Muscular Atrophy, Spinal * genetics diagnosis MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Nitrogen, phosphorus, and potassium are the three most essential micronutrients which play major roles in plant survivability by being a structural or non-structural component of the cell. Plants acquire these nutrients from soil in the fixed (NO3 ̄, NH4+) and solubilized forms (K+, H2PO4- and HPO42-). In soil, the fixed and solubilized forms of nutrients are unavailable or available in bare minimum amounts; therefore, agrochemicals were introduced. Agrochemicals, mined from the deposits or chemically prepared, have been widely used in the agricultural farms over the decades for the sake of higher production of the crops. The excessive use of agrochemicals has been found to be deleterious for humans, as well as the environment. In the environment, agrochemical usage resulted in soil acidification, disturbance of microbial ecology, and eutrophication of aquatic and terrestrial ecosystems. A solution to such devastating agro-input was found to be substituted by macronutrients-availing microbiomes. Macronutrients-availing microbiomes solubilize and fix the insoluble form of nutrients and convert them into soluble forms without causing any significant harm to the environment. Microbes convert the insoluble form to the soluble form of macronutrients (nitrogen, phosphorus, and potassium) through different mechanisms such as fixation, solubilization, and chelation. The microbiomes having capability of fixing and solubilizing nutrients contain some specific genes which have been reported in diverse microbial species surviving in different niches. In the present review, the biodiversity, mechanism of action, and genomics of different macronutrients-availing microbiomes are presented.
- MeSH
- Bacteria * metabolism genetics classification MeSH
- Biodiversity * MeSH
- Biotechnology * MeSH
- Potassium metabolism MeSH
- Nitrogen metabolism MeSH
- Phosphorus metabolism MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology MeSH
- Crops, Agricultural MeSH
- Agriculture MeSH
- Nutrients * metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
PURPOSE: Genetic testing in consanguineous families advances the general comprehension of pathophysiological pathways. However, short stature (SS) genetics remain unexplored in a defined consanguineous cohort. This study examines a unique pediatric cohort from Sulaimani, Iraq, aiming to inspire a genetic testing algorithm for similar populations. METHODS: Among 280 SS referrals from 2018-2020, 64 children met inclusion criteria (from consanguineous families; height ≤ -2.25 SD), 51 provided informed consent (30 females; 31 syndromic SS) and underwent investigation, primarily via exome sequencing. Prioritized variants were evaluated by the American College of Medical Genetics and Genomics standards. A comparative analysis was conducted by juxtaposing our findings against published gene panels for SS. RESULTS: A genetic cause of SS was elucidated in 31 of 51 (61%) participants. Pathogenic variants were found in genes involved in the GH-IGF-1 axis (GHR and SOX3), thyroid axis (TSHR), growth plate (CTSK, COL1A2, COL10A1, DYM, FN1, LTBP3, MMP13, NPR2, and SHOX), signal transduction (PTPN11), DNA/RNA replication (DNAJC21, GZF1, and LIG4), cytoskeletal structure (CCDC8, FLNA, and PCNT), transmembrane transport (SLC34A3 and SLC7A7), enzyme coding (CYP27B1, GALNS, and GNPTG), and ciliogenesis (CFAP410). Two additional participants had Silver-Russell syndrome and 1 had del22q.11.21. Syndromic SS was predictive in identifying a monogenic condition. Using a gene panel would yield positive results in only 10% to 33% of cases. CONCLUSION: A tailored testing strategy is essential to increase diagnostic yield in children with SS from consanguineous populations.
- MeSH
- Algorithms MeSH
- Child MeSH
- Genetic Testing * methods MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation genetics MeSH
- Dwarfism genetics diagnosis MeSH
- Consanguinity * MeSH
- Growth Disorders genetics diagnosis MeSH
- Child, Preschool MeSH
- Pedigree MeSH
- Exome Sequencing methods MeSH
- Body Height genetics MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Iraq MeSH
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present Phenopacket Store. Phenopacket Store v.0.1.19 includes 6,668 phenopackets representing 475 Mendelian and chromosomal diseases associated with 423 genes and 3,834 unique pathogenic alleles curated from 959 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
- MeSH
- Algorithms MeSH
- Databases, Genetic MeSH
- Phenotype * MeSH
- Genomics * methods MeSH
- Humans MeSH
- Software * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
- MeSH
- DNA, Bacterial genetics chemistry MeSH
- Flavobacteriaceae * classification isolation & purification genetics MeSH
- Phospholipids analysis MeSH
- Phylogeny MeSH
- Genome, Bacterial MeSH
- Nucleic Acid Hybridization MeSH
- Fatty Acids analysis MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Bacterial Typing Techniques MeSH
- Vitamin K 2 analysis analogs & derivatives MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Japan MeSH
Euglenids have long been studied due to their unique physiology and versatile metabolism, providing underpinnings for much of our understanding of photosynthesis and biochemistry, and a growing opportunity in biotechnology. Until recently there has been a lack of genetic studies due to their large and complex genomes, but recently new technologies have begun to unveil their genetic capabilities. Whilst much research has focused on the model organism Euglena gracilis, other members of the euglenids have now started to receive due attention. Currently only poor nuclear genome assemblies of E. gracilis and Rhabdomonas costata are available, but there are many more plastid genome sequences and an increasing number of transcriptomes. As more assemblies become available, there are great opportunities to understand the fundamental biology of these organisms and to exploit them for biotechnology.
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
- MeSH
- Fertility * physiology MeSH
- Proteostasis * physiology MeSH
- Humans MeSH
- Infertility, Male * metabolism genetics pathology physiopathology MeSH
- Spermatogenesis * MeSH
- Spermatozoa * metabolism pathology physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Bats are the natural reservoirs for a variety of emerging and re-emerging viruses. Among them, rabies virus (genus Lyssavirus, family Rhabdoviridae) is one of the first and most emblematic described in these animals. Since its first description, several new bat lyssaviruses have been regularly identified. In addition to lyssaviruses, other bat rhabdoviruses have also been discovered, including members of the genera Vesiculovirus, Ledantevirus and, more recently, Alphanemrhavirus and Tupavirus. However, the family Rhabdoviridae is one of the most abundant and diverse viral families, with 434 officially recognized species, divided into 5 subfamilies and 56 different genera. The number of rhabdoviruses associated with bats is therefore probably higher than that currently available. In this study, we first developed and validated a combined nested RT-qPCR technique (pan-rhabdo RT-nqPCR) dedicated to the broad detection of animal rhabdoviruses. After validation, this technique was used for a large retrospective screening of archival bat samples (n = 1962), including blood (n = 816), brain (n = 723) and oral swab (n = 423). These samples were collected from various bat species over a 12-year period (2007-2019) in 9 different countries in Europe and Africa. A total of 23 samples (1.2%) from bat species Miniopterus schreibersii, Rhinolophus euryale and Rhinolophus ferrumequinum tested positive for rhabdovirus infection, including 17 (2.1%) blood and 6 (1.4%) oral swab samples, all collected from bats originating from the Mediterranean region. Complete virus genome sequences were obtained by next-generation sequencing for most of the positive samples. Molecular and phylogenetic analysis of these sequences demonstrated that the virus isolates, named Mediterranean bat virus (MBV), were closely related and represented a new species, Mediterranean vesiculovirus, within the genus Vesiculovirus. MBV was more specifically related to other bat vesiculoviruses previously described from China and North America, together clustering into a distinct group of bat viruses within this genus. Interestingly, our results suggest that MBV is widespread, at least in the western part of the Mediterranean region, where it circulates in the blood of several bat species. These results expand the host range and viral diversity of bat vesiculoviruses, and pave the way for further studies to determine the transmission route and dissemination dynamics of these viruses in bat colonies, as well as to assess their potential threat to public health.
- MeSH
- Chiroptera * virology MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Rhabdoviridae Infections * veterinary epidemiology virology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Vesiculovirus * genetics isolation & purification classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mediterranean Region MeSH