noise spectroscopy
Dotaz
Zobrazit nápovědu
- MeSH
- adenosintrifosfát chemie izolace a purifikace MeSH
- algoritmy MeSH
- experimenty na lidech MeSH
- Fourierova analýza MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody přístrojové vybavení MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- statistika jako téma MeSH
- Check Tag
- lidé MeSH
PURPOSE: To determine the test-retest reproducibility of neurochemical concentrations obtained with a highly optimized, short-echo, single-voxel proton MR spectroscopy (MRS) pulse sequence at 3T and 7T using state-of-the-art hardware. METHODS: A semi-LASER sequence (echo time = 26-28 ms) was used to acquire spectra from the posterior cingulate and cerebellum at 3T and 7T from six healthy volunteers who were scanned four times weekly on both scanners. Spectra were quantified with LCModel. RESULTS: More neurochemicals were quantified with mean Cramér-Rao lower bounds (CRLBs) ≤20% at 7T than at 3T despite comparable frequency-domain signal-to-noise ratio. Whereas CRLBs were lower at 7T (P < 0.05), between-session coefficients of variance (CVs) were comparable at the two fields with 64 transients. Five metabolites were quantified with between-session CVs ≤5% at both fields. Analysis of subspectra showed that a minimum achievable CV was reached with a lower number of transients at 7T for multiple metabolites and that between-session CVs were lower at 7T than at 3T with fewer than 64 transients. CONCLUSION: State-of-the-art MRS methodology allows excellent reproducibility for many metabolites with 5-min data averaging on clinical 3T hardware. Sensitivity and resolution advantages at 7T are important for weakly represented metabolites, short acquisitions, and small volumes of interest. Magn Reson Med 76:1083-1091, 2016. © 2015 Wiley Periodicals, Inc.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie přístrojové vybavení metody MeSH
- molekulární zobrazování přístrojové vybavení metody MeSH
- mozek anatomie a histologie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- tkáňová distribuce MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- validační studie MeSH
BACKGROUND: Omega-3 (n-3) fatty acids (FA) play and important role in neural development and other metabolic diseases such as obesity and diabetes. The knowledge about the in vivo content and distribution of n-3 FA in human body tissues is not well established and the standard quantification of FA is invasive and costly. PURPOSE: To detect omega-3 (n-3 CH3 ) and non-omega-3 (CH3 ) methyl group resonance lines with echo times up to 1200 msec, in oils, for the assessment of n-3 FA content, and the n-3 FA fraction in adipose tissue in vivo. STUDY TYPE: Prospective technical development. POPULATION: Three oils with different n-3 FA content and 24 healthy subjects. FIELD STRENGTH/SEQUENCE: Single-voxel MR spectroscopy (SVS) with a point-resolved spectroscopy (PRESS) sequence with an echo time (TE) of 1000 msec at 7 T. ASSESSMENT: Knowledge about the J-coupling evolution of both CH3 resonances was used for the optimal detection of the n-3 CH3 resonance line at a TE of 1000 msec. The accuracy of the method in oils and in vivo was validated from a biopsy sample with gas chromatography analysis. STATISTICAL TESTS: SVS data were compared to gas chromatography with the Pearson correlation coefficient. RESULTS: T2 relaxation times in oils were assessed as follows: CH2 , 65 ± 22 msec; CH3 , 325 ± 7 msec; and n-3 CH3 , 628 ± 34 msec. The n-3 FA fractions from oil phantom experiments (n = 3) were in agreement with chromatography analysis and the comparison of in vivo obtained data with the results of chromatography analysis (n = 5) yielded a significant correlation (P = 0.029). DATA CONCLUSION: PRESS with ultralong-TE can detect and quantify the n-3 CH3 signal in vivo at 7 T. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:71-82.
- MeSH
- dospělí MeSH
- fantomy radiodiagnostické MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * MeSH
- omega-3 mastné kyseliny chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- počítačová simulace MeSH
- podkožní tuk diagnostické zobrazování MeSH
- poměr signál - šum MeSH
- prospektivní studie MeSH
- senioři MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The improving performance of the laser-induced breakdown spectroscopy (LIBS) triggered its utilization in the challenging topic of soft tissue analysis. Alterations of elemental content within soft tissues are commonly assessed and provide further insights in biological research. However, the laser ablation of soft tissues is a complex issue and demands a priori optimization, which is not straightforward in respect to a typical LIBS experiment. Here, we focus on implementing an internal standard into the LIBS elemental analysis of soft tissue samples. We achieve this by extending routine methodology for optimization of soft tissues analysis with a standard spiking method. This step enables a robust optimization procedure of LIBS experimental settings. Considering the implementation of LIBS analysis to the histological routine, we avoid further alterations of the tissue structure. Therefore, we propose a unique methodology of sample preparation, analysis, and subsequent data treatment, which enables the comparison of signal response from heterogenous matrix for different LIBS parameters. Additionally, a brief step-by-step process of optimization to achieve the highest signal-to-noise ratio (SNR) is described. The quality of laser-tissue interaction is investigated on the basis of the zinc signal response, while selected experimental parameters (e.g., defocus, gate delay, laser energy, and ambient atmosphere) are systematically modified.
- MeSH
- buňky MeSH
- laserová terapie * MeSH
- lasery * MeSH
- referenční standardy MeSH
- spektrální analýza MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
Fluorescence Lifetime Correlation Spectroscopy (FLCS) is a variant of fluorescence correlation spectroscopy (FCS), which uses differences in fluorescence intensity decays to separate contributions of different fluorophore populations to FCS signal. Besides which, FLCS is a powerful tool to improve quality of FCS data by removing noise and distortion caused by scattered excitation light, detector thermal noise and detector afterpulsing. We are providing an overview of, to our knowledge, all published applications of FLCS. Although these are not numerous so far, they illustrate possibilities for the technique and the research topics in which FLCS has the potential to become widespread. Furthermore, we are addressing some questions which may be asked by a beginner user of FLCS. The last part of the text reviews other techniques closely related to FLCS. The generalization of the idea of FLCS paves the way for further promising application of the principle of statistical filtering of signals. Specifically, the idea of fluorescence spectral correlation spectroscopy is here outlined.
- Publikační typ
- časopisecké články MeSH
The quality of data measured in in vivo MR spectroscopy is often insufficient due to a number of limitations such as low concentrations of observed metabolites and restricted measurement time resulting in a low signal-to-noise ratio. However, there are a variety of methods called post-processing techniques which allow the enhancement of the measured signal after measurement. In this review an introduction to the most important post-processing techniques for (1)H MR spectroscopy is given and practical examples are shown. In the first section the concept of FID and spectrum is introduced and the relationship between FID and spectrum is explained. Subsequently, the objectives and description of the following post-processing techniques are provided: eddy current correction, removal of an unwanted component (water), signal filtering for various purposes, zero filling, phase correction and baseline correction.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- počítačové zpracování obrazu metody MeSH
- počítačové zpracování signálu MeSH
- tělesná voda metabolismus MeSH
- vylepšení obrazu metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.
- MeSH
- fantomy radiodiagnostické * MeSH
- kosterní svaly * diagnostické zobrazování chemie MeSH
- kyselina mléčná chemie metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie * metody MeSH
- poměr signál - šum MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Targeted mass spectrometry-based proteomics approaches enable the simultaneous and reproducible quantification of multiple protein analytes across numerous conditions in biology and clinical studies. These approaches involve e.g. selected reaction monitoring (SRM) typically conducted on a triple quadrupole mass spectrometer, its high-resolution variant named pseudo-SRM (p-SRM), carried out in a quadrupole coupled with an TOF analyzer (qTOF), and "sequential window acquisition of all theoretical spectra" (SWATH). Here we compared these methods in terms of signal-to-noise ratio (S/N), coefficient of variance (CV), fold change (FC), limit of detection and quantitation (LOD, LOQ). We have shown the highest S/N for p-SRM mode, followed by SRM and SWATH, demonstrating a trade-off between sensitivity and level of multiplexing for SRM, p-SRM, and SWATH. SRM was more sensitive than p-SRM based on determining their LOD and LOQ. Although SWATH has the worst S/N, it enables peptide multiplexing with post-acquisition definition of the targets, leading to better proteome coverage. FC between breast tumors of different clinical-pathological characteristics were highly correlated (R2 >0.97) across three methods and consistent with the previous study on 96 tumor tissues. Our technical note presented here, therefore, confirmed that outputs of all the three methods were biologically relevant and highly applicable to cancer research.
- MeSH
- hmotnostní spektrometrie přístrojové vybavení metody MeSH
- lidé MeSH
- limita detekce MeSH
- nádory chemie metabolismus MeSH
- poměr signál - šum MeSH
- proteiny analýza MeSH
- proteomika metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH