Overview of the Current State of Gallium Arsenide-Based Solar Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34199850
PubMed Central
PMC8200097
DOI
10.3390/ma14113075
PII: ma14113075
Knihovny.cz E-zdroje
- Klíčová slova
- application, concentrators, degradation, gallium arsenide, solar cells, space, structure, uav,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As widely-available silicon solar cells, the development of GaAs-based solar cells has been ongoing for many years. Although cells on the gallium arsenide basis today achieve the highest efficiency of all, they are not very widespread. They have particular specifications that make them attractive, especially for certain areas. Thanks to their durability under challenging conditions, it is possible to operate them in places where other solar cells have already undergone significant degradation. This review summarizes past, present, and future uses of GaAs photovoltaic cells. It examines advances in their development, performance, and various current implementations and modifications.
Zobrazit více v PubMed
Brozel M.R., Stillman G.E. Properties of Gallium Arsenide. IEE; London, UK: 1996. INSPEC (Information service) p. 981.
Ghandhi S.K. VLSI Fabrication Principles: Silicon and Gallium Arsenide. Wiley; Hoboken, NJ, USA: 1994. p. 834.
Barron A.R. Chemistry of Electronic Materials. Midas Green Innovations; Swansea, Wales: 2021. p. 214.
Arickx P., Kurstjens R., Geens W., Dessein K. The Next Generation of Germanium Substrates: ExpogerTM. E3S Web Conf. 2017;16:03010. doi: 10.1051/e3sconf/20171603010. DOI
Alferov Z.A. NobelPrize.org. [(accessed on 3 May 2021)]; Available online: https://www.nobelprize.org/prizes/physics/2000/alferov/facts/
Papež N. Ph.D. Thesis. Brno University of Technology; Brno, Czech Republic: 2021. Degradation of GaAs Solar Cells.
Yamaguchi M., Takamoto T., Araki K., Kojima N. Recent results for concentrator photovoltaics in Japan. Jpn. J. Appl. Phys. 2016;55:04EA05. doi: 10.7567/JJAP.55.04EA05. DOI
Geisz J.F., France R.M., Schulte K.L., Steiner M.A., Norman A.G., Guthrey H.L., Young M.R., Song T., Moriarty T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy. 2020;5:326–335. doi: 10.1038/s41560-020-0598-5. DOI
Darbe S., Escarra M.D., Warmann E.C., Atwater H.A. Simulation and partial prototyping of an eight-junction holographic spectrum-splitting photovoltaic module. Energy Sci. Eng. 2019;7:2572–2584. doi: 10.1002/ese3.445. DOI
Iles P.A. Encyclopedia of Energy. Elsevier; Amsterdam, The Netherlands: 2004. Photovoltaic Conversion: Space Applications; pp. 25–33. DOI
King R.R., Fetzer C.M., Law D.C., Edmondson K.M., Yoon H., Kinsey G.S., Krut D.D., Ermer J.H., Hebert P., Cavicchi B.T., et al. Advanced III-V multijunction cells for space; Proceedings of the Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4; Waikoloa, HI, USA. 7–12 May 2006; pp. 1757–1762. DOI
Li J., Aierken A., Zhuang Y., Xu P.Q., Wu H.Q., Zhang Q.Y., Wang X.B., Mo J.H., Yang X., Chen Q.Y., et al. 1 MeV electron and 10 MeV proton irradiation effects on inverted metamorphic GaInP/GaAs/InGaAs triple junction solar cell. Sol. Energy Mater. Sol. Cells. 2021;224:111022. doi: 10.1016/j.solmat.2021.111022. DOI
Rodziewicz T., Zaremba A., Wacławek M. Photovoltaics: Solar energy resources and the possibility of their use. Ecol. Chem. Eng. S. 2016;23:9–32. doi: 10.1515/eces-2016-0001. DOI
Ţălu Ş., Papež N., Sobola D., Tofel P. DEStech Transactions on Environment, Energy and Earth Sciences. DEStech Publications Inc.; Lancaster, PA, USA: 2018. Fractal Analysis of the 3-D surface Topography of GaAs Solar Cells. DOI
Sobola D., Ţălu Ş., Tománek P. Surface Condition of GaAs Solar Cells. Acta Tech. Corviniensis Bull. Eng. 2017:27–32.
Kittel C. Introduction to Solid State Physics. Wiley; Hoboken, NJ, USA: 2004.
NSM Archive—Physical Properties of Semiconductors. [(accessed on 4 May 2021)]; Available online: http://www.ioffe.ru/SVA/NSM/Semicond/
Varshni Y.P. Temperature dependence of the energy gap in semiconductors. Physica. 1967;34:149–154. doi: 10.1016/0031-8914(67)90062-6. DOI
Vurgaftman I., Meyer J.R., Ram-Mohan L.R. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 2001;89:5815–5875. doi: 10.1063/1.1368156. DOI
Sharma T.K. MOVPE and MBE growth of semiconductor thin films. AIP Conf. Proc. 2012;1451:18–23. doi: 10.1063/1.4732359. DOI
Pelzel R. A Comparison of MOVPE and MBE Growth Technologies for III-V Epitaxial Structures; Proceedings of the CS MANTECH Conference; New Orleans, LA, USA. 13–16 May 2013.
Tu C.W., Beggy J.C., Baiocchi F.A., Abys S.M., Pearton S.J., Hsieh S.J., Kopf R.F., Caruso R., Jordan A.S. Lattice-Matched Gaas/Ca 0.45 Sr 0.55 F 2/Ge(100) Heterostrucuures Grown By Molecular Beam Epitaxy. MRS Proc. 1987;91:359–364. doi: 10.1557/PROC-91-359. DOI
Eaglesham D.J., Devenish R., Fan R.T., Humphreys C.J., Morkoc H., Bradley R.R., Augustus P.D. Microscopy of Semiconducting Materials, 1987. CRC Press; Boca Raton, FL, USA: 2020. Defects in MBE and MOCVD-grown GaAs on Si; pp. 105–110. DOI
Kim Y., Shin H.B., Lee W.H., Jung S.H., Kim C.Z., Kim H., Lee Y.T., Kang H.K. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol. Energy Mater. Sol. Cells. 2019;200:109984. doi: 10.1016/j.solmat.2019.109984. DOI
Huang X., Long J., Wu D., Ye S., Li X., Sun Q., Xing Z., Yang W., Song M., Guo Y., et al. Flexible four-junction inverted metamorphic AlGaInP/AlGaAs/ In0.17Ga0.83As/In0.47Ga0.53As solar cell. Sol. Energy Mater. Sol. Cells. 2020;208:110398. doi: 10.1016/j.solmat.2020.110398. DOI
Hagar B., Sayed I., Colter P.C., Bedair S.M. Multi-junction solar cells by Intermetallic Bonding and interconnect of Dissimilar Materials: GaAs/Si. Sol. Energy Mater. Sol. Cells. 2020;215:110653. doi: 10.1016/j.solmat.2020.110653. DOI
Colozza A.J., Scheiman D.A., Brinker D.J. GaAs/Ge Solar Powered Aircraft. SAE International; Warrendale, PA, USA: 1998. SAE Technical Papers. DOI
Scheiman D.A., Brinker D.J., Bents D.J., Colozza A.J. Design of a GaAs/Ge solar array for unmanned aerial vehicles; Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference; Waikoloa, HI, USA. 5–9 December 1994; pp. 2006–2009. DOI
Wojtczuk S., Reinhardt K. High-power density (1040 W/kg) GaAs cells for ultralight aircraft; Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference; Washington, DC, USA. 13–17 May 1996; pp. 49–52. DOI
Kayes B.M., Zhang L., Twist R., Ding I.K., Higashi G.S. Flexible thin-film tandem solar cells with >30% efficiency. IEEE J. Photovolt. 2014;4:729–733. doi: 10.1109/JPHOTOV.2014.2299395. DOI
Stender C.L., Adams J., Elarde V., Major T., Miyamoto H., Osowski M., Pan N., Tatavarti R., Tuminello F., Wibowo A., et al. Flexible and lightweight epitaxial lift-off GaAs multi-junction solar cells for portable power and UAV applications; Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015; New Orleans, LA, USA. 14–19 June 2015; DOI
Scheiman D., Hoheisel R., Edwards D.J., Paulsen A., Lorentzen J., Jenkins P., Caruthers S., Carter S., Walters R. A path toward enhanced endurance of a UAV using IMM solar cells; Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference; Portland, OR, USA. 5–10 June 2016; pp. 1095–1100. DOI
D’Oliveira F.A., De Melo F.C.L., Devezas T.C. High-altitude platforms—Present situation and technology trends. J. Aerosp. Technol. Manag. 2016;8:249–262. doi: 10.5028/jatm.v8i3.699. DOI
Zephyr-UAV-Airbus. [(accessed on 1 May 2021)]; Available online: https://www.airbus.com/defence/uav/zephyr.html.
Maguire Y. Building Communications Networks in the Stratosphere—Facebook Engineering. [(accessed on 3 May 2021)];2015 Available online: https://engineering.fb.com/2015/07/30/connectivity/building-communications-networks-in-the-stratosphere/
Maguire Y. High Altitude Connectivity: The Next Chapter—Facebook Engineering. [(accessed on 3 May 2021)];2018 Available online: https://engineering.fb.com/2018/06/27/connectivity/high-altitude-connectivity-the-next-chapter/
Weintraub S. Alphabet Cuts Former Titan Drone Program from X Division, Employees Dispersing to Other Units—9to5Google. [(accessed on 3 May 2021)];2017 Available online: https://9to5google.com/2017/01/11/alphabet-titan-cut/
Boyer M. High-Altitude Pseudo-Satellite|Sunglider™ Platform Station|AeroVironment, Inc. [(accessed on 3 May 2021)];2019 Available online: https://www.avinc.com/resources/press-releases/view/hawk30-takes-flight-aerovironment-achieves-successful-first-test-flight-of.
Boyuan C. Rainbow Solar UAV to Make High-Altitude Flight Soon—China.org.cn. [(accessed on 3 May 2021)];2017 Available online: http://www.china.org.cn/china/2017-03/06/content_40418057.htm.
PHASA-35 First Flight|Newsroom|BAE Systems|International. [(accessed on 3 May 2021)];2020 Available online: https://www.baesystems.com/en/article/ground-breaking-solar-powered-unmanned-aircraft-makes-first-flight.
High Altitude, Ultra-Long Endurance, Pseudo-Satellite—HAPS—Odysseus —Aurora Flight Sciences. [(accessed on 3 May 2021)]; Available online: https://www.aurora.aero/odysseus-high-altitude-pseudo-satellite-haps/
Smith J.M. Alta Devices moves out of the lab and into the valley. MRS Bull. 2012;37:794–795. doi: 10.1557/mrs.2012.225. DOI
Prismatic Prismatic Completes First Two PHASA-35 HALE UAVs—Prismatic. [(accessed on 1 May 2021)];2019 Available online: https://www.prismaticltd.co.uk/news/prismatic-completes-first-two-phasa-35-hale-uavs/
Kasaeian A., Tabasi S., Ghaderian J., Yousefi H. A review on parabolic trough/Fresnel based photovoltaic thermal systems. Renew. Sustain. Energy Rev. 2018;91:193–204. doi: 10.1016/j.rser.2018.03.114. DOI
Sasaki K., Agui T., Nakaido K., Takahashi N., Onitsuka R., Takamoto T. AIP Conference Proceedings. Volume 1556. American Institute of Physics Inc.; College Park, MD, USA: 2013. Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells; pp. 22–25. DOI
Hudec C.L. Calhoun; Monterey, CA, USA: 1988. Construction of Gallium Arsenide Solar Concentrator for Space Use.
O’neill M., Piszczor M. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications; Proceedings of the 19th IEEE Photovoltaic Specialists Conference; New Orleans, LA, USA. 4–8 May 1987.
Warmann E.C., Espinet-Gonzalez P., Vaidya N., Loke S., Naqavi A., Vinogradova T., Kelzenberg M., Leclerc C., Gdoutos E., Pellegrino S., et al. An ultralight concentrator photovoltaic system for space solar power harvesting. Acta Astronaut. 2020;170:443–451. doi: 10.1016/j.actaastro.2019.12.032. DOI
Hornung T., Hornung T. Ph.D. Thesis. Fraunhofer Institute for Solar Energy Systems ISE; Freiburg, Germany: 2013. Ein-und Mehrstufige Optische Konzentratoren für Photovoltaische Anwendungen.
Papež N., Gajdoš A., Dallaev R., Sobola D., Sedlák P., Motúz R., Nebojsa A., Grmela L. Performance analysis of GaAs based solar cells under gamma irradiation. Appl. Surf. Sci. 2020;510:145329. doi: 10.1016/j.apsusc.2020.145329. DOI
Steiner M., Bösch A., Dilger A., Dimroth F., Dörsam T., Muller M., Hornung T., Siefer G., Wiesenfarth M., Bett A.W. FLATCON® CPV module with 36.7% efficiency equipped with four-junction solar cells. Prog. Photovolt. Res. Appl. 2015;23:1323–1329. doi: 10.1002/pip.2568. DOI
Wiesenfarth M., Steiner M., Dörsam T., Siefer G., Dimroth F., Nitz P., Bett A.W. AIP Conference Proceedings. Volume 2149. American Institute of Physics Inc.; College Park, MD, USA: 2019. FLATCON® CPV module technology: A new design based on the evaluation of 10 years of outdoor measurement data; p. 030007. DOI
Awan A.B., Zubair M., Praveen R.P., Bhatti A.R. Design and comparative analysis of photovoltaic and parabolic trough based CSP plants. Sol. Energy. 2019;183:551–565. doi: 10.1016/j.solener.2019.03.037. DOI
Widyolar B.K., Abdelhamid M., Jiang L., Winston R., Yablonovitch E., Scranton G., Cygan D., Abbasi H., Kozlov A. Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renew. Energy. 2017;101:1379–1389. doi: 10.1016/j.renene.2016.10.014. DOI
Habchi A., Hartiti B., Labrim H., Fadili S., Benyoussef A., Belouaggadia N., Faddouli A., Benaissa M., Ntsoenzok E., EZ-Zahraouy H. Performance study of a new hybrid parabolic trough collector system integrated with hybrid tubular thermoelectric generator. Appl. Therm. Eng. 2021;192:116656. doi: 10.1016/j.applthermaleng.2021.116656. DOI
Slooff L.H., Bende E.E., Burgers A.R., Budel T., Pravettoni M., Kenny R.P., Dunlop E.D., Büchtemann A. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi RRL Rapid Res. Lett. 2008;2:257–259. doi: 10.1002/pssr.200802186. DOI
Andreev V.M. Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier Inc.; Amsterdam, The Netherlands: 2003. GaAs and High-Efficiency Space Cells; pp. 417–433. DOI
Leverington D. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope. Cambridge University Press; Cambridge, UK: 2000. p. 507.
Garner R. Observatory—Electrical Power. [(accessed on 3 May 2021)];2017 Available online: https://www.nasa.gov/content/goddard/hubble-space-telescope-electrical-power-system/
EMCORE Corporation Awarded Solar Panel Manufacturing Contract From ATK Space Systems|EMCORE. [(accessed on 2 May 2021)]; Available online: https://investor.emcore.com/news-releases/news-release-details/emcore-corporation-awarded-solar-panel-manufacturing-contract.
Toyota H., Ishii N., Nakamura M., Ooto H., Koide K., Sakamoto T., Abe H., Yoshino H., Takamura H., Ose T., et al. On-Orbit Operations of A Power System For Japan’s Venus Explorer Akatsuki. E3S Web Conf. 2017;16:18004. doi: 10.1051/e3sconf/20171618004. DOI
Lauretta D.S., Balram-Knutson S.S., Beshore E., Boynton W.V., Drouet d’Aubigny C., DellaGiustina D.N., Enos H.L., Golish D.R., Hergenrother C.W., Howell E.S., et al. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Sci. Rev. 2017;212:925–984. doi: 10.1007/s11214-017-0405-1. DOI
Robinson-Avila K. From New Mexico to Mars—SolAero Technologies, Inc. [(accessed on 3 May 2021)];2020 Available online: https://solaerotech.com/https-www-abqjournal-com-1518244-from-new-mexico-to-mars-ex-national-labs-local-businesses-contribute-brains-brawn-to-spacecraft-html/
Images from the Mars Perseverance Rover—NASA Mars. [(accessed on 1 May 2012)];2021 Available online: https://mars.nasa.gov/mars2020/multimedia/raw-images/SI1/0046/0671022109/238ECM/N0031416SRLC07021/000085J.
Cotal H., Fetzer C., Boisvert J., Kinsey G., King R., Hebert P., Yoon H., Karam N. III-V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2009;2:174–192. doi: 10.1039/B809257E. DOI
Smil V. The Earth’s Biosphere: Evolution, Dynamics, and Change. MIT Press; Cambridge, MA, USA: 2002. p. 346.
Böhm-Vitense E. Introduction to Stellar Astrophysics. Cambridge University Press; Cambridge, UK: 1989.
Luminosity of Stars. [(accessed on 3 May 2021)]; Available online: https://www.atnf.csiro.au/outreach/education/senior/astrophysics/photometry_luminosity.html.
Lissauer J.J., de Pater I. Fundamental Planetary Science. Cambridge University Press; Cambridge, UK: 2013. DOI
Papež N., Sobola D., Škvarenina Ľ., Škarvada P., Hemzal D., Tofel P., Grmela L. Degradation analysis of GaAs solar cells at thermal stress. Appl. Surf. Sci. 2018;461:212–220. doi: 10.1016/j.apsusc.2018.05.093. DOI
Papež N., Škvarenina Ľ., Tofel P., Sobola D. Thermal stability of gallium arsenide solar cells; Proceedings of the SPIE; San Diego, CA, USA. 6–10 August 2017; p. 10603. DOI
Papež N., Gajdoš A., Sobola D., Dallaev R., Macků R., Škarvada P., Grmela L. Effect of gamma radiation on properties and performance of GaAs based solar cells. Appl. Surf. Sci. 2020;527:146766. doi: 10.1016/j.apsusc.2020.146766. DOI
Papež N., Dallaev R., Kaspar P., Sobola D., Škarvada P., Ţălu Ş., Ramazanov S., Nebojsa A. Characterization of GaAs Solar Cells under Supercontinuum Long-Time Illumination. Materials. 2021;14:461. doi: 10.3390/ma14020461. PubMed DOI PMC
Papež N., Dallaev R., Sobola D., Macku R., Škarvada P. Procedia Structural Integrity. Volume 23. Elsevier B.V.; Amsterdam, The Netherlands: 2019. Microstructural investigation of defects in photovoltaic cells by the electron beam-induced current method; pp. 595–600. DOI
Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star; Cluj-Napoca, Romania: 2015.
Ţălu Ş., Papež N., Sobola D., Achour A., Solaymani S. Micromorphology investigation of GaAs solar cells: Case study on statistical surface roughness parameters. J. Mater. Sci. Mater. Electron. 2017;28:15370–15379. doi: 10.1007/s10854-017-7422-4. DOI
Li J., Wang Z., Xue Y., Shi C., Ning H., Xu R., Jiao Q., Jia T. Theoretical simulation of the degradation on GaAs sub-cell with different defects induced by 1MeV electron irradiation. Optik. 2020;223:165532. doi: 10.1016/j.ijleo.2020.165532. DOI
Hu J.M., Wu Y.Y., Zhang Z., Yang D.Z., He S.Y. A study on the degradation of GaAs/Ge solar cells irradiated by <200 keV protons. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2008;266:267–270. doi: 10.1016/j.nimb.2007.11.010. DOI
Gruginskie N., Cappelluti F., van Eerden M., Bauhuis G., Mulder P., Vlieg E., Schermer J. Proton irradiation induced GaAs solar cell performance degradation simulations using a physics-based model. Sol. Energy Mater. Sol. Cells. 2021;223:110971. doi: 10.1016/j.solmat.2021.110971. DOI
Yamaguchi M. Post-Transition Metals. IntechOpen; London, UK: 2021. High-Efficiency GaAs-Based Solar Cells. DOI
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers