Characterization of GaAs Solar Cells under Supercontinuum Long-Time Illumination
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33477904
PubMed Central
PMC7833441
DOI
10.3390/ma14020461
PII: ma14020461
Knihovny.cz E-zdroje
- Klíčová slova
- Raman spectroscopy, electrical characteristics, gallium arsenide, illumination, sims, supercontinuum, xps,
- Publikační typ
- časopisecké články MeSH
This work is dedicated to the description of the degradation of GaAs solar cells under continuous laser irradiation. Constant and strong exposure of the solar cell was performed over two months. Time-dependent electrical characteristics are presented. The structure of the solar cells was studied at the first and last stages of degradation test. The data from Raman spectroscopy, reflectometry, and secondary ion mass spectrometry confirm displacement of titanium and aluminum atoms. X-ray photoelectron spectroscopy showed a slight redistribution of oxygen bonds in the anti-corrosion coating.
Zobrazit více v PubMed
Papež N., Sobola D., Škvarenina Ľ., Škarvada P., Hemzal D., Tofel P., Grmela L. Degradation analysis of GaAs solar cells at thermal stress. Appl. Surf. Sci. 2018;461:212–220. doi: 10.1016/j.apsusc.2018.05.093. DOI
Papež N., Škvarenina Ľ., Tofel P., Sobola D. Thermal stability of gallium arsenide solar cells. In: Páta P., Fliegel K., editors. Photonics, Devices, and Systems VII. Volume 10603. SPIE; Bellingham, WA, USA: 2017. p. 27. DOI
Papež N., Gajdoš A., Dallaev R., Sobola D., Sedlák P., Motúz R., Nebojsa A., Grmela L. Performance analysis of GaAs based solar cells under gamma irradiation. Appl. Surf. Sci. 2020;510 doi: 10.1016/j.apsusc.2020.145329. DOI
Ferrando E., Brambilla L., Caccivio M., Zamboni A., Campesato R., Flores C., Gabetta G., Strobl G., Nell M., Gerlach L. Testing activities and results of GaAs space solar cells and PV assemblies for high temperature and insolation applications; Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion; Osaka, Japan. 1–18 May 2003; pp. 797–800.
Ortiz E., Algora C. A high-efficiency LPE GaAs solar cell at concentrations ranging from 2000 to 4000 suns. Prog. Photovoltaics Res. Appl. 2003;11:155–163. doi: 10.1002/pip.476. DOI
Papež N. Structural analysis of GaAs-based PV cells after ionizing irradiation. In: Novak V., editor. Proceedings II of the 26th Conference STUDENT EEICT 2020. Brno Univ Technology, FAC Electrical Eng & Communication; Brno, Czech Republic: 2020. pp. 203–208.
Dennis T. Full-spectrum optical-beam-induced current for solar cell microscopy and multi-junction characterization; Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference; Tampa Bay, FL, USA. 16–21 June 2013; DOI
Hartl I., Li X.D., Chudoba C., Ghanta R.K., Ko T.H., Fujimoto J.G., Ranka J.K., Windeler R.S. Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Opt. Lett. 2001 doi: 10.1364/OL.26.000608. PubMed DOI
Tamura K.R., Kubota H., Nakazawa M. Fundamentals of stable continuum generation at high repetition rates. IEEE J. Quantum Electron. 2000 doi: 10.1109/3.848347. DOI
Dunsby C., French P.M. Supercontinuum Generation in Optical Fibers. Cambridge University Press; Cambridge, UK: 2010. Biophotonics applications of supercontinuum generation. DOI
Qi L., Xie Y., Liu Y., Jing H., Zhang R. Thermal-stress distribution and damage characteristics of three-junction GaAs solar cell irradiated by continuous laser beam. Optik. 2019 doi: 10.1016/j.ijleo.2019.163284. DOI
Krauss K., Fertig F., Menzel D., Rein S. Light-induced Degradation of Silicon Solar Cells with Aluminiumoxide Passivated Rear Side. Energy Procedia. 2015 doi: 10.1016/j.egypro.2015.07.086. DOI
Ponst D., Bourgoint J.C. Irradiation-induced defects in GaAs. J. Phys. Solid State Phys. 1985 doi: 10.1088/0022-3719/18/20/012. DOI
Mai R., Wu X., Jiang Y., Meng Y., Liu B., Hu X., Roncali J., Zhou G., Liu J.M., Kempa K., et al. An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. J. Mater. Chem. 2019;7:1539–1547. doi: 10.1039/C8TA09724K. DOI
Lin J.Y., Dissanayake A., Jiang H.X. DX centers in Al0.34Ga0.66As amorphous thin films. Solid State Commun. 1993 doi: 10.1016/0038-1098(93)90414-I. DOI
Vasan R., Makableh Y.F., Manasreh M.O. Comparison of anti-reflective properties of single layer anatase and rutile TiO2 on GaAs based solar cells. Mrs Adv. 2016 doi: 10.1557/adv.2016.116. DOI
Ţa˘lu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star Publishing House; Cluj-Napoca, Romania: 2015.
Ţa˘lu Ş., Papež N., Sobola D., Achour A., Solaymani S. Micromorphology investigation of GaAs solar cells: Case study on statistical surface roughness parameters. J. Mater. Sci. Mater. Electron. 2017;28:15370–15379. doi: 10.1007/s10854-017-7422-4. DOI
Lang R., Schön J., Lefèvre J., Boizot B., Dimroth F., Lackner D. Radiation hardness and post irradiation regeneration behavior of GaInAsP solar cells. Sol. Energy Mater. Sol. Cells. 2020;211:110551. doi: 10.1016/j.solmat.2020.110551. DOI
Hussin M.Z., Omar A.M., Shaari S., Sin N.D. Review of state-of-the-art: Inverter-to-array power ratio for thin—Film sizing technique. Renew. Sustain. Energy Rev. 2017;74:265–277. doi: 10.1016/j.rser.2016.09.080. DOI
Wagner J., Geppert T., Köhler K., Ganser P., Herres N. N-induced vibrational modes in GaAsN and GaInAsN studied by resonant Raman scattering. J. Appl. Phys. 2001 doi: 10.1063/1.1412277. DOI
Shang A., Li X. Photovoltaic Devices: Opto-Electro-Thermal Physics and Modeling. Adv. Mater. 2017;29:1603492. doi: 10.1002/adma.201603492. PubMed DOI
Lee T., Rho H., Song J.D., Choi W.J. Raman scattering from GaAs/AlGaAs multiple quantum well structures grown by two-step molecular beam epitaxy. Curr. Appl. Phys. 2017;17:398–402. doi: 10.1016/j.cap.2016.12.023. DOI
Phong Pham D., Kim T., Lee S., Yi J. Reduction in GaAs interfacial defects via structural phase variation of hydrogenated silicon films. Infrared Phys. Technol. 2020;111:103534. doi: 10.1016/j.infrared.2020.103534. DOI
Espinosa-Vega L.I., Eugenio-Lopez E., Gutierrez-Hernandez J.M., Gorbatchev A.Y., Shimomura S., Mendez-Garcia V.H. Strain and anisotropy effects studied in InAs/GaAs(2 2 1) quantum dashes by Raman spectroscopy. J. Cryst. Growth. 2017;477:212–216. doi: 10.1016/j.jcrysgro.2017.04.004. DOI
Strömberg A., Omanakuttan G., Liu Y., Mu T., Xu Z., Lourdudoss S., Sun Y.T. Heteroepitaxy of GaAsP and GaP on GaAs and Si by low pressure hydride vapor phase epitaxy. J. Cryst. Growth. 2020;540:125623. doi: 10.1016/j.jcrysgro.2020.125623. DOI
Dallaeva D.S., Bilalov B.A., Gitikchiev M.A., Kardashova G.D., Safaraliev G.K., Tománek P., Škarvada P., Smith S. Structural properties of Al2O3/AlN thin film prepared by magnetron sputtering of Al in HF-activated nitrogen plasma. Thin Solid Film. 2012 doi: 10.1016/j.tsf.2012.11.023. DOI
Song T., Liu Q., Liu J., Yang W., Chen R., Jing X., Takahashi K., Wang J. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property. Appl. Surf. Sci. 2015 doi: 10.1016/j.apsusc.2015.07.140. DOI
Škarvada P., Tománek P., Koktavý P., Macků R., Šicner J., Vondra M., Dallaeva D., Smith S., Grmela L. A variety of microstructural defects in crystalline silicon solar cells. Appl. Surf. Sci. 2014 doi: 10.1016/j.apsusc.2014.05.064. DOI
Chou Y.C., Leung D., Lai R., Grundbacher R., Liu P.H., Biedenbender M., Kan Q., Eng D., Wojtowicz M., Oki A. On the investigation of gate metal interdiffusion in GaAs HEMTs; Proceedings of the 25th Annual Technical Digest 2003, IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium; San Diego, CA, USA. 9–12 November 2003; DOI
Berechman R.A., Revzin B., Shapira Y. Correlating gate sinking and electrical performance of pseudomorphic high electron mobility transistors. Microelectron. Reliab. 2007 doi: 10.1016/j.microrel.2006.08.020. DOI
Ţălu Ş, Sobola D., Papež N., Dallaev R., Sedlák P. Efficient Processing of Data Acquired Using Microscopy Techniques. Destech Trans. Soc. Sci. Educ. Hum. Sci. 2018 doi: 10.12783/dtssehs/amse2018/24838. DOI
Kaur G., Mitra A., Yadav K.L. Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. Mater. Int. 2015;25:12–21. doi: 10.1016/j.pnsc.2015.01.012. DOI
Papež N., Gajdoš A., Sobola D., Dallaev R., Macků R., Škarvada P., Grmela L. Effect of gamma radiation on properties and performance of GaAs based solar cells. Appl. Surf. Sci. 2020;527 doi: 10.1016/j.apsusc.2020.146766. DOI
Structure Tuning and Electrical Properties of Mixed PVDF and Nylon Nanofibers
Overview of the Current State of Gallium Arsenide-Based Solar Cells