Impact of cognitive reserve on dance intervention-induced changes in brain plasticity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34535714
PubMed Central
PMC8448766
DOI
10.1038/s41598-021-97323-2
PII: 10.1038/s41598-021-97323-2
Knihovny.cz E-zdroje
- MeSH
- kognitivní rezerva * MeSH
- kognitivní stárnutí * MeSH
- lidé středního věku MeSH
- lidé MeSH
- neuroplasticita * MeSH
- senioři MeSH
- tanec * MeSH
- terapie tancem MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dance is a complex sensorimotor activity with positive effects on physical fitness, cognition, and brain plasticity in the aging population. We explored whether individual levels of cognitive reserve (CR) proxied by education moderate dance intervention (DI)-induced plasticity assessed by resting-state functional connectivity (rs-FC) changes of the sensorimotor network (SMN), and between the dorsal attention network (DAN) and anterior default mode network (aDMN). Our cohort consisted of 99 subjects, randomly assigned to either a DI group who underwent a 6-month intervention (n = 49, Mage = 69.02 ± 5.40) or a control group (n = 50, Mage = 69.37 ± 6.10). Moderation analyses revealed that CR moderated DI-induced increase of the SMN rs-FC with significant changes observed in participants with ≥ 15 years of education (b = 0.05, t(62) = 3.17, p = 0.002). Only DI alone was a significant predictor of the DAN-aDMN crosstalk change (b = 0.06, t(64) = 2.16, p = 0.035). The rs-FC increase in the SMN was correlated with an improved physical fitness measure, and changes in the DAN-aDMN connectivity were linked to better performance on figural fluency. Consistent with the passive CR hypothesis, we observed that CR correlated only with baseline behavioral scores, not their change.
Zobrazit více v PubMed
Kattenstroth JC, Kolankowska I, Kalisch T, Dinse HR. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front. Aging Neurosci. 2010;2:1–9. PubMed PMC
Kattenstroth JC, Kalisch T, Holt S, Tegenthoff M, Dinse HR. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 2013;5:1–16. doi: 10.3389/fnagi.2013.00005. PubMed DOI PMC
Hwang PWN, Braun KL. The effectiveness of dance interventions to improve older adults’ health: A systematic literature review phoebe. Altern. Ther. Health Med. 2015;21:64–70. PubMed PMC
Müller P, et al. Evolution of neuroplasticity in response to physical activity in old age: The case for dancing. Front. Aging Neurosci. 2017;9:1–8. PubMed PMC
Rehfeld K, et al. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS ONE. 2018;13:1–15. doi: 10.1371/journal.pone.0196636. PubMed DOI PMC
Coubard OA, Duretz S, Lefebvre V, Lapalus P, Ferrufino L. Practice of contemporary dance improves cognitive flexibility in aging. Front. Aging Neurosci. 2011;3:1–12. doi: 10.3389/fnagi.2011.00013. PubMed DOI PMC
Ehlers, D. K. et al. Regional brain volumes moderate, but do not mediate, the effects of group-based exercise training on reductions in loneliness in older adults. Front. Aging Neurosci.9, 1–12. 10.3389/fnagi.2017.00110 (2017). PubMed PMC
Meng X, et al. Effects of dance intervention on global cognition, executive function and memory of older adults: A meta-analysis and systematic review. Aging Clin. Exp. Res. 2020;32:7–19. doi: 10.1007/s40520-019-01159-w. PubMed DOI
Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53:255–267. doi: 10.1093/geront/gns071. PubMed DOI
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014;32:40–51. doi: 10.1038/nbt.2786. PubMed DOI
Sejnoha Minsterova, A. et al. Multishell diffusion MRI reflects improved physical fitness induced by dance intervention. Neural Plast.2020, 1–9. 10.1155/2020/8836925 (2020). PubMed PMC
Kropacova S, et al. Cognitive effects of dance-movement intervention in a mixed group of seniors are not dependent on hippocampal atrophy. J. Neural Transm. 2019;126:1455–1463. doi: 10.1007/s00702-019-02068-y. PubMed DOI
Rektorova I, et al. Brain structure changes in nondemented seniors after six-month dance-exercise intervention. Acta Neurol. Scand. 2020;141:90–97. doi: 10.1111/ane.13181. PubMed DOI
Johanidesova S, Bolcekova E, Stepankova H, Preiss M. The five point test—A test of nonverbal fluency: normative data for adults. Ces. Slov. Neurol. Neurochir. 2014;110:704–713.
Fama R, et al. Fluency performance patterns in Alzheimer’s disease and Parkinson’s disease. Clin. Neuropsychol. 1998;12:487–499. doi: 10.1076/clin.12.4.487.7235. DOI
Lövdén M, Bäckman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 2010;136:659–676. doi: 10.1037/a0020080. PubMed DOI
Stern Y, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 2018 doi: 10.1016/j.jalz.2018.07.219. PubMed DOI PMC
Cabeza, R. et al. Cognitive neuroscience of healthy aging: Maintenance, reserve, and compensation. Nat. Rev. Neurosci. 19, 701–710 (2018). PubMed PMC
Tucker AM, Stern Y. Cognitive reserve and aging. Curr. Alzheimer Res. 2010;8:354–360. doi: 10.2174/156720511795745320. PubMed DOI PMC
Stern Y. Cognitive reserve: Implications for assessment and intervention. Folia Phoniatr. Logop. 2014;65:49–54. doi: 10.1159/000353443. PubMed DOI PMC
Dolcos F, Rice HJ, Cabeza R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002;26:819–825. doi: 10.1016/S0149-7634(02)00068-4. PubMed DOI
Barulli D, Stern Y. Emerging concepts in cognitive reserve. Trends Cogn Sci. 2013;17:1–17. doi: 10.1016/j.tics.2013.08.012. PubMed DOI PMC
Franzmeier N, et al. Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiol. Aging. 2017;50:152–162. doi: 10.1016/j.neurobiolaging.2016.11.013. PubMed DOI
Roldán-Tapia MD, Cánovas R, León I, García-Garcia J. Cognitive vulnerability in aging may be modulated by education and reserve in healthy people. Front. Aging Neurosci. 2017;9:1–8. doi: 10.3389/fnagi.2017.00340. PubMed DOI PMC
Elbaz A, Tavernier B. The decreases in motor function in the elderly. Am. Acad. Neurol. 2013;81:417–426. PubMed PMC
Gao W, Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum. Brain Mapp. 2012;33:192–202. doi: 10.1002/hbm.21204. PubMed DOI PMC
McGregor KM, et al. Effects of a 12-week aerobic spin intervention on resting state networks in previously sedentary older adults. Front. Psychol. 2018;9:1–13. doi: 10.3389/fpsyg.2018.02376. PubMed DOI PMC
Voss MW, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010;2:1–17. PubMed PMC
Loeb GE, Brown IE, Cheng EJ. A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 1999;126:1–18. doi: 10.1007/s002210050712. PubMed DOI
Novakova L, Gajdos M, Rektorova I. Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: An exploratory study. Brain Stimul. 2020;13:597–599. doi: 10.1016/j.brs.2020.01.015. PubMed DOI
Crosson B, et al. Activity in the paracingulate and cingulate sulci during word generation: An fMRI study of functional anatomy. Cereb. Cortex. 1999;9:307–316. doi: 10.1093/cercor/9.4.307. PubMed DOI
Spreng RN, Shoemaker L, Turner GR. Executive Functions and Neurocognitive Aging. Executive Functions in Health and Disease. Elsevier Inc.; 2017.
Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16:584–592. doi: 10.1016/j.tics.2012.10.008. PubMed DOI PMC
Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist. 2014;20:150–159. doi: 10.1177/1073858413494269. PubMed DOI PMC
Cole MW, Repovš G, Anticevic A. The frontoparietal control system: A central role in mental health. Neurosci. 2014;20:652–664. PubMed PMC
Kragel JE, Polyn SM. Functional interactions between large-scale networks during memory search. Cereb. Cortex. 2015;25:667–679. doi: 10.1093/cercor/bht258. PubMed DOI
Iordan AD, et al. Aging and network properties: Stability over time and links with learning during working memory training. Front. Aging Neurosci. 2018;9:1–18. doi: 10.3389/fnagi.2017.00419. PubMed DOI PMC
Burzynska, A. Z., Finc, K., Taylor, B. K., Knecht, A. M. & Kramer, A. F. The dancing brain: Structural and functional signatures of expert dance training. Front. Hum. Neurosci.11, 1–20. 10.3389/fnhum.2017.00566 (2017). PubMed PMC
Kullberg-Turtiainen M, Vuorela K, Huttula L, Turtiainen P, Koskinen S. Individualized goal directed dance rehabilitation in chronic state of severe traumatic brain injury: A case study. Heliyon. 2019;5:e01184. doi: 10.1016/j.heliyon.2019.e01184. PubMed DOI PMC
Cespón J, Miniussi C, Pellicciari MC. Interventional programmes to improve cognition during healthy and pathological ageing: Cortical modulations and evidence for brain plasticity. Ageing Res. Rev. 2018;43:81–98. doi: 10.1016/j.arr.2018.03.001. PubMed DOI
Teixeira-Machado L, Arida RM, de Jesus Mari J. Dance for neuroplasticity: A descriptive systematic review. Neurosci. Biobehav. Rev. 2019;96:232–240. doi: 10.1016/j.neubiorev.2018.12.010. PubMed DOI
Vahdat S, Darainy M, Milner TE, Ostry DJ. Functionally specific changes in resting-state sensorimotor networks after motor learning. J. Neurosci. 2011;31:16907–16915. doi: 10.1523/JNEUROSCI.2737-11.2011. PubMed DOI PMC
Fling BW, Martini DN, Zeeboer E, Hildebrand A, Cameron M. Neuroplasticity of the sensorimotor neural network associated with walking aid training in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2019;6:1–4. doi: 10.1016/j.msard.2019.03.004. PubMed DOI PMC
Hänggi J, Koeneke S, Bezzola L, Jäncke L. Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Hum. Brain Mapp. 2010;31:1196–1206. PubMed PMC
Sunwoo MK, Hong JY, Lee JJ, Lee PH, Sohn YH. Does education modify motor compensation in Parkinson’s disease? J. Neurol. Sci. 2016;362:118–120. doi: 10.1016/j.jns.2016.01.030. PubMed DOI
Kotagal V, et al. Educational attainment and motor burden in Parkinson’s disease. Mov. Disord. 2015;30:1143–1147. doi: 10.1002/mds.26272. PubMed DOI PMC
Saunders NLJ, Summers MJ. Attention and working memory deficits in mild cognitive impairment. J. Clin. Exp. Neuropsychol. 2010;32:350–357. doi: 10.1080/13803390903042379. PubMed DOI
Anthony M, Lin F. A systematic review for functional neuroimaging studies of cognitive reserve across the cognitive aging spectrum. Arch. Clin. Neuropsychol. 2017;33:937–948. doi: 10.1093/arclin/acx125. PubMed DOI PMC
Zilidou VI, et al. Functional re-organization of cortical networks of senior citizens after a 24-week traditional dance program. Front. Aging Neurosci. 2018;10:1–14. doi: 10.3389/fnagi.2018.00422. PubMed DOI PMC
Alijore O, Lamar M, Anand K. Association of brain network efficiency with aging, depression, and cognition. Am. J. Geriatr. Psychiatry. 2014;22:102–110. doi: 10.1016/j.jagp.2013.10.004. PubMed DOI PMC
Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of dementia in the Elderly Joe. N. Engl. J. Med. 2003;348:2508–2516. doi: 10.1056/NEJMoa022252. PubMed DOI
Lo, R. Y., & Jagust, W. J. Effect of cognitive reserve markers on alzheimer pathological progression. Alzheimer Dis. Assoc. Disord. 27, 1–14. 10.1097/WAD.0b013e3182900b2b (2013). PubMed PMC
Gazzina S, et al. Education modulates brain maintenance in presymptomatic frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry. 2019;90:1124–1130. doi: 10.1136/jnnp-2019-320439. PubMed DOI
Lee PC, et al. Examining the reserve hypothesis in Parkinson’s disease: A longitudinal study. Mov. Disord. 2019;34:1663–1671. doi: 10.1002/mds.27854. PubMed DOI
Reed BR, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain. 2010;133:2196–2209. doi: 10.1093/brain/awq154. PubMed DOI PMC
McKenzie C, et al. Cognitive reserve predicts future executive function decline in older adults with Alzheimer’s disease pathology but not age-associated pathology. Neurobiol. Aging. 2020;88:119–127. doi: 10.1016/j.neurobiolaging.2019.12.022. PubMed DOI
van Loenhoud AC, Habeck C, van der Flier WM, Ossenkoppele R, Stern Y. Identifying a task-invariant cognitive reserve network using task potency. Neuroimage. 2020;210:116593. doi: 10.1016/j.neuroimage.2020.116593. PubMed DOI PMC
Williams N. The Borg rating of perceived exertion (RPE) scale. Occup. Med. (Chic. Ill.) 2017;67:404–405. doi: 10.1093/occmed/kqx063. DOI
Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 2000;44:162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E. PubMed DOI
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC
Klobušiakova P, Mareček R, Fousek J, Výtvarova E, Rektorova I. Connectivity between brain networks dynamically reflects cognitive status of Parkinson’s disease: A longitudinal study. J. Alzheimer’s Dis. 2019;67:971–984. doi: 10.3233/JAD-180834. PubMed DOI PMC
Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage. 2010;52:1059–1069. doi: 10.1016/j.neuroimage.2009.10.003. PubMed DOI