Congruent evolutionary responses of European steppe biota to late Quaternary climate change

. 2022 Apr 08 ; 13 (1) : 1921. [epub] 20220408

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35396388

Grantová podpora
P 25955 Austrian Science Fund FWF - Austria

Odkazy

PubMed 35396388
PubMed Central PMC8993823
DOI 10.1038/s41467-022-29267-8
PII: 10.1038/s41467-022-29267-8
Knihovny.cz E-zdroje

Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.

Zobrazit více v PubMed

Shackleton NJ, Sánchez-Goñi MF, Pailler D, Lancelot Y. Marine isotope substage 5e and the eemian interglacial. Glob. Planet. Change. 2003;36:151–155.

Shackleton NJ, Chapman M, Sánchez-Goñi MF, Pailler D, Lancelot Y. The classic marine isotope substage 5e. Quat. Res. 2002;58:14–16.

Hofreiter M, Stewart J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 2009;19:R584–R594. PubMed

Hewitt GM. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112.

Petit RJ, et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300:1563–1565. PubMed

Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat. Sci. Rev. 2017;163:23–55.

Calatayud J, et al. Pleistocene climate change and the formation of regional species pools. Proc. R. Soc. B Biol. Sci. 2019;286:20190291. PubMed PMC

Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol.30, 3575–3589 (2021). PubMed

Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139, 106572 (2019). PubMed

Wesche K, et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 2016;25:2197–2231.

Walter, H. & Breckle, S. Ökologie der Erde, Band 1. (Spektrum Akademischer Verlag, 1991).

Braun-Blanquet, J. Die inneralpine Trockenvegetation: von der Provence bis zur Steiermark. (Gustav Fischer, 1961).

Hurka H, et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia. 2019;22:5–71.

Jännicke, W. Die Sandflora von Mainz, ein Relict aus der Steppenzeit. (Gebrueder Knauer, 1892).

Allen JRM, et al. Rapid environmental changes in southern Europe during the last glacial period. Nature. 1999;400:740–743.

Reille M, de Beaulieu JL. Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France) Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990;80:35–48.

Sadori L, et al. Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences. 2016;13:1423–1437.

Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. (Stuttgart: Verlag Eugen Ulmer, 2010).

Kirschner P, et al. Long-term isolation of European steppe outposts boosts the biomes conservation value. Nat. Commun. 2020;11:1968. PubMed PMC

Fonseca, E. M., Colli, G. R., Werneck, F. P. & Carstens, B. C. Phylogeographic model selection using convolutional neural networks. Mol. Ecol. Resour. 21, 2661–2675 (2021). PubMed

Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–2035. PubMed PMC

Csilléry K, Blum MGB, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 2010;25:410–418. PubMed

Flagel L, Brandvain Y, Schrider DR. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol. Biol. Evol. 2019;36:220–238. PubMed PMC

Robert CP, Cornuet J-M, Marin J-M, Pillai NS. Lack of confidence in approximate Bayesian computation model choice. Proc. Natl Acad. Sci. USA. 2011;108:15112–15117. PubMed PMC

Sanchez, T., Cury, J., Charpiat, G. & Jay, F. Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation. Mol. Ecol. Resour.21, 2645–2660 (2021). PubMed

Liu X, Fu Y-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 2020;21:280. PubMed PMC

Liu X, Fu Y-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 2015;47:555–559. PubMed PMC

Magri D, et al. A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 2006;171:199–221. PubMed

Pironon S, et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 2017;92:1877–1909. PubMed

Arenas M, Ray N, Currat M, Excoffier L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 2012;29:207–218. PubMed

Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 2008;40:481–501.

Mona S, Ray N, Arenas M, Excoffier L. Genetic consequences of habitat fragmentation during a range expansion. Heredity. 2014;112:291–299. PubMed PMC

Szűcs M, Melbourne BA, Tuff T, Hufbauer RA. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 2014;281:20141073. PubMed PMC

Loog L. Sometimes hidden but always there: the assumptions underlying genetic inference of demographic histories. Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20190719. PubMed PMC

Narbona E, Arista M, Ortiz PL. Explosive seed dispersal in two perennial Mediterranean Euphorbia species (Euphorbiaceae) Am. J. Bot. 2005;92:510–516. PubMed

Stevens VM, et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 2014;17:1039–1052. PubMed

Flouri T, Jiao X, Rannala B, Yang Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 2018;35:2585–2593. PubMed PMC

Willeit M, Ganopolski A, Calov R, Brovkin V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 2019;5:eaav7337. PubMed PMC

Hansen J, Sato M, Russell G, Kharecha P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013;371:20120294. PubMed PMC

Martinson DG, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 1987;27:1–29.

OConnell KA, et al. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus) Mol. Ecol. 2020;29:2994–3009. PubMed

Theodoridis S, et al. How do cold-adapted plants respond to climatic cycles? Interglacial expansion explains current distribution and genomic diversity in Primula farinosa L. Syst. Biol. 2017;66:715–736. PubMed

Williams M. The <73 ka Toba super-eruption and its impact: history of a debate. Quat. Int. 2012;258:19–29.

Marquer L, et al. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat. Sci. Rev. 2017;171:20–37.

Jackson ND, Morales AE, Carstens BC, OMeara BC. PHRAPL: phylogeographic inference using approximate likelihoods. Syst. Biol. 2017;66:1045–1053. PubMed

Oaks JR. Full Bayesian comparative phylogeography from genomic data. Syst. Biol. 2019;68:371–395. PubMed PMC

Perez, M. F. et al. Coalescent-based species delimitation meets deep learning: Insights from a highly fragmented cactus system. Mol. Ecol. Resour.22, 1016–1028 (2022). PubMed

Baird NA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:1–7. PubMed PMC

Paun O, et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 2016;65:212–227. PubMed PMC

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. PubMed PMC

Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 2017;8:1360–1373.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC

O’Leary SJ, Puritz JB, Willis SC, Hollenbeck CM, Portnoy DS. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 2018;27:3193–3206. PubMed

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed

Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ. Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus) Evolution. 2019;73:2476–2496. PubMed

Ortiz D, Pekár S, Bilat J, Alvarez N. Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Mol. Phylogenet. Evol. 2021;154:106997. PubMed

Tiley, G. P., Poelstra, J. W., dos Reis, M., Yang, Z. & Yoder, A. D. Molecular clocks without rocks: new solutions for old problems. Trends Genet. 36, 845–856 (2020). PubMed

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. PubMed PMC

Angelis K, Dos Reis M. The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Curr. Zool. 2015;61:874–885.

Yoder AD, et al. Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar’s forests past. Proc. Natl Acad. Sci. USA. 2016;113:8049–8056. PubMed PMC

Ossowski S, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327:92–94. PubMed PMC

Keightley PD, Ness RW, Halligan DL, Haddrill PR. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogasterfull-sib family. Genetics. 2014;196:313–320. PubMed PMC

Charlesworth, B. Evolution in Age-Structured Populations. (Cambridge University Press, 1994). 10.1017/CBO9780511525711.

Ingram KK, Pilko A, Heer J, Gordon DM. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 2013;82:540–550. PubMed

Lauenroth WK, Adler PB. Demography of perennial grassland plants: survival, life expectancy and life span. J. Ecol. 2008;96:1023–1032.

Golubeva IV. The age structure and numbers dynamics of feather grass (Stipa pennata L.) in the conditions of meadow steppe. Sci. Proc. Mosc. Reg. Pedagog. Inst. Nat. Geogr. Inst. 1964;153:283–303.

Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC

Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–338. PubMed

Oliveira EA, et al. Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography. 2020;43:1291–1304.

Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. Preprint at arXivhttps://arxiv.org/abs/1706.04599 (2017).

Mondal M, Bertranpetit J, Lao O. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat. Commun. 2019;10:246. PubMed PMC

Rosauer DF, Catullo RA, VanDerWal J, Moussalli A, Moritz C. Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS ONE. 2015;10:e0126274. PubMed PMC

Watanabe S, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011;4:845–872.

Gent PR, et al. The Community Climate System Model Version 4. J. Clim. 2011;24:4973–4991.

Richmond OMW, McEntee JP, Hijmans RJ, Brashares JS. Is the climate right for Pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE. 2010;5:e12899. PubMed PMC

Perez, M. F. Congruent evolutionary responses of European steppe biota to late Quaternary climate change: insights from convolutional neural network-based demographic modeling. CNN_ABCsteppe10.5281/zenodo.5948567 (2022). PubMed PMC

Anhuf, D., Bräuning, A., Burkhard, F. & Max, S. Die Vegetationsentwicklung seit dem Höhepunkt der letzten Eiszeit. In Nationalatlas Bundesrepublik Deutschland. Band 3. Klima, Pflanzen- und Tierwelt (ed. Kappas, M.) 88–91 (Spektrum, 2003).

Becker, D., Verheul, J., Zickel, M. & Willmes, C. LGM paleoenvironment of Europe—Map. CRC806-Database10.5880/SFB806.15 (2015).

de Beaulieu J-L, Reille M. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France) Veg. Hist. Archaeobotany. 1992;1:233–242.

Tzedakis PCC, Emerson BCC, Hewitt GMM. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 2013;28:696–704. PubMed

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.19107944.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...