Congruent evolutionary responses of European steppe biota to late Quaternary climate change
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 25955
Austrian Science Fund FWF - Austria
PubMed
35396388
PubMed Central
PMC8993823
DOI
10.1038/s41467-022-29267-8
PII: 10.1038/s41467-022-29267-8
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- ekosystém MeSH
- fylogeneze MeSH
- klimatické změny * MeSH
- společenstvo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Quaternary climatic oscillations had a large impact on European biogeography. Alternation of cold and warm stages caused recurrent glaciations, massive vegetation shifts, and large-scale range alterations in many species. The Eurasian steppe biome and its grasslands are a noteworthy example; they underwent climate-driven, large-scale contractions during warm stages and expansions during cold stages. Here, we evaluate the impact of these range alterations on the late Quaternary demography of several phylogenetically distant plant and insect species, typical of the Eurasian steppes. We compare three explicit demographic hypotheses by applying an approach combining convolutional neural networks with approximate Bayesian computation. We identified congruent demographic responses of cold stage expansion and warm stage contraction across all species, but also species-specific effects. The demographic history of the Eurasian steppe biota reflects major paleoecological turning points in the late Quaternary and emphasizes the role of climate as a driving force underlying patterns of genetic variance on the biome level.
Department of Botany University of Innsbruck Sternwartestraße 15 6020 Innsbruck Austria
Department of Ecology University of Innsbruck Technikerstraße 25 6020 Innsbruck Austria
Department of Genetics and Evolution University of Geneva Boulevard D'Yvoy 4 1205 Genève Switzerland
Geneva Natural History Museum of Geneva Route de Malagnou 1 1208 Genève Switzerland
Institute of Botany of the Czech Academy of Sciences Zámek 1 25243 Průhonice Czech Republic
Real Jardín Botánico CSIC Plaza de Murillo 2 28014 Madrid Spain
Zobrazit více v PubMed
Shackleton NJ, Sánchez-Goñi MF, Pailler D, Lancelot Y. Marine isotope substage 5e and the eemian interglacial. Glob. Planet. Change. 2003;36:151–155.
Shackleton NJ, Chapman M, Sánchez-Goñi MF, Pailler D, Lancelot Y. The classic marine isotope substage 5e. Quat. Res. 2002;58:14–16.
Hofreiter M, Stewart J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 2009;19:R584–R594. PubMed
Hewitt GM. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112.
Petit RJ, et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300:1563–1565. PubMed
Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat. Sci. Rev. 2017;163:23–55.
Calatayud J, et al. Pleistocene climate change and the formation of regional species pools. Proc. R. Soc. B Biol. Sci. 2019;286:20190291. PubMed PMC
Ebdon, S. et al. The Pleistocene species pump past its prime: evidence from European butterfly sister species. Mol. Ecol.30, 3575–3589 (2021). PubMed
Záveská, E. et al. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol. Phylogenet. Evol. 139, 106572 (2019). PubMed
Wesche K, et al. The Palaearctic steppe biome: a new synthesis. Biodivers. Conserv. 2016;25:2197–2231.
Walter, H. & Breckle, S. Ökologie der Erde, Band 1. (Spektrum Akademischer Verlag, 1991).
Braun-Blanquet, J. Die inneralpine Trockenvegetation: von der Provence bis zur Steiermark. (Gustav Fischer, 1961).
Hurka H, et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia. 2019;22:5–71.
Jännicke, W. Die Sandflora von Mainz, ein Relict aus der Steppenzeit. (Gebrueder Knauer, 1892).
Allen JRM, et al. Rapid environmental changes in southern Europe during the last glacial period. Nature. 1999;400:740–743.
Reille M, de Beaulieu JL. Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar (Massif Central, France) Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990;80:35–48.
Sadori L, et al. Pollen-based paleoenvironmental and paleoclimatic change at Lake Ohrid (south-eastern Europe) during the past 500 ka. Biogeosciences. 2016;13:1423–1437.
Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. (Stuttgart: Verlag Eugen Ulmer, 2010).
Kirschner P, et al. Long-term isolation of European steppe outposts boosts the biomes conservation value. Nat. Commun. 2020;11:1968. PubMed PMC
Fonseca, E. M., Colli, G. R., Werneck, F. P. & Carstens, B. C. Phylogeographic model selection using convolutional neural networks. Mol. Ecol. Resour. 21, 2661–2675 (2021). PubMed
Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–2035. PubMed PMC
Csilléry K, Blum MGB, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol. Evol. 2010;25:410–418. PubMed
Flagel L, Brandvain Y, Schrider DR. The unreasonable effectiveness of convolutional neural networks in population genetic inference. Mol. Biol. Evol. 2019;36:220–238. PubMed PMC
Robert CP, Cornuet J-M, Marin J-M, Pillai NS. Lack of confidence in approximate Bayesian computation model choice. Proc. Natl Acad. Sci. USA. 2011;108:15112–15117. PubMed PMC
Sanchez, T., Cury, J., Charpiat, G. & Jay, F. Deep learning for population size history inference: design, comparison and combination with approximate Bayesian computation. Mol. Ecol. Resour.21, 2645–2660 (2021). PubMed
Liu X, Fu Y-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 2020;21:280. PubMed PMC
Liu X, Fu Y-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 2015;47:555–559. PubMed PMC
Magri D, et al. A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol. 2006;171:199–221. PubMed
Pironon S, et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 2017;92:1877–1909. PubMed
Arenas M, Ray N, Currat M, Excoffier L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 2012;29:207–218. PubMed
Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 2008;40:481–501.
Mona S, Ray N, Arenas M, Excoffier L. Genetic consequences of habitat fragmentation during a range expansion. Heredity. 2014;112:291–299. PubMed PMC
Szűcs M, Melbourne BA, Tuff T, Hufbauer RA. The roles of demography and genetics in the early stages of colonization. Proc. R. Soc. B Biol. Sci. 2014;281:20141073. PubMed PMC
Loog L. Sometimes hidden but always there: the assumptions underlying genetic inference of demographic histories. Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20190719. PubMed PMC
Narbona E, Arista M, Ortiz PL. Explosive seed dispersal in two perennial Mediterranean Euphorbia species (Euphorbiaceae) Am. J. Bot. 2005;92:510–516. PubMed
Stevens VM, et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 2014;17:1039–1052. PubMed
Flouri T, Jiao X, Rannala B, Yang Z. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol. Biol. Evol. 2018;35:2585–2593. PubMed PMC
Willeit M, Ganopolski A, Calov R, Brovkin V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 2019;5:eaav7337. PubMed PMC
Hansen J, Sato M, Russell G, Kharecha P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2013;371:20120294. PubMed PMC
Martinson DG, et al. Age dating and the orbital theory of the ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res. 1987;27:1–29.
OConnell KA, et al. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus) Mol. Ecol. 2020;29:2994–3009. PubMed
Theodoridis S, et al. How do cold-adapted plants respond to climatic cycles? Interglacial expansion explains current distribution and genomic diversity in Primula farinosa L. Syst. Biol. 2017;66:715–736. PubMed
Williams M. The <73 ka Toba super-eruption and its impact: history of a debate. Quat. Int. 2012;258:19–29.
Marquer L, et al. Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quat. Sci. Rev. 2017;171:20–37.
Jackson ND, Morales AE, Carstens BC, OMeara BC. PHRAPL: phylogeographic inference using approximate likelihoods. Syst. Biol. 2017;66:1045–1053. PubMed
Oaks JR. Full Bayesian comparative phylogeography from genomic data. Syst. Biol. 2019;68:371–395. PubMed PMC
Perez, M. F. et al. Coalescent-based species delimitation meets deep learning: Insights from a highly fragmented cactus system. Mol. Ecol. Resour.22, 1016–1028 (2022). PubMed
Baird NA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:1–7. PubMed PMC
Paun O, et al. Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Syst. Biol. 2016;65:212–227. PubMed PMC
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. PubMed PMC
Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Methods Ecol. Evol. 2017;8:1360–1373.
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
O’Leary SJ, Puritz JB, Willis SC, Hollenbeck CM, Portnoy DS. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 2018;27:3193–3206. PubMed
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 2005;14:2611–2620. PubMed
Maier PA, Vandergast AG, Ostoja SM, Aguilar A, Bohonak AJ. Pleistocene glacial cycles drove lineage diversification and fusion in the Yosemite toad (Anaxyrus canorus) Evolution. 2019;73:2476–2496. PubMed
Ortiz D, Pekár S, Bilat J, Alvarez N. Poor performance of DNA barcoding and the impact of RAD loci filtering on the species delimitation of an Iberian ant-eating spider. Mol. Phylogenet. Evol. 2021;154:106997. PubMed
Tiley, G. P., Poelstra, J. W., dos Reis, M., Yang, Z. & Yoder, A. D. Molecular clocks without rocks: new solutions for old problems. Trends Genet. 36, 845–856 (2020). PubMed
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. PubMed PMC
Angelis K, Dos Reis M. The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Curr. Zool. 2015;61:874–885.
Yoder AD, et al. Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar’s forests past. Proc. Natl Acad. Sci. USA. 2016;113:8049–8056. PubMed PMC
Ossowski S, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327:92–94. PubMed PMC
Keightley PD, Ness RW, Halligan DL, Haddrill PR. Estimation of the spontaneous mutation rate per nucleotide site in a Drosophila melanogasterfull-sib family. Genetics. 2014;196:313–320. PubMed PMC
Charlesworth, B. Evolution in Age-Structured Populations. (Cambridge University Press, 1994). 10.1017/CBO9780511525711.
Ingram KK, Pilko A, Heer J, Gordon DM. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 2013;82:540–550. PubMed
Lauenroth WK, Adler PB. Demography of perennial grassland plants: survival, life expectancy and life span. J. Ecol. 2008;96:1023–1032.
Golubeva IV. The age structure and numbers dynamics of feather grass (Stipa pennata L.) in the conditions of meadow steppe. Sci. Proc. Mosc. Reg. Pedagog. Inst. Nat. Geogr. Inst. 1964;153:283–303.
Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. PubMed PMC
Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–338. PubMed
Oliveira EA, et al. Historical demography and climate driven distributional changes in a widespread Neotropical freshwater species with high economic importance. Ecography. 2020;43:1291–1304.
Guo, C., Pleiss, G., Sun, Y. & Weinberger, K. Q. On calibration of modern neural networks. Preprint at arXivhttps://arxiv.org/abs/1706.04599 (2017).
Mondal M, Bertranpetit J, Lao O. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat. Commun. 2019;10:246. PubMed PMC
Rosauer DF, Catullo RA, VanDerWal J, Moussalli A, Moritz C. Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS ONE. 2015;10:e0126274. PubMed PMC
Watanabe S, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011;4:845–872.
Gent PR, et al. The Community Climate System Model Version 4. J. Clim. 2011;24:4973–4991.
Richmond OMW, McEntee JP, Hijmans RJ, Brashares JS. Is the climate right for Pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE. 2010;5:e12899. PubMed PMC
Perez, M. F. Congruent evolutionary responses of European steppe biota to late Quaternary climate change: insights from convolutional neural network-based demographic modeling. CNN_ABCsteppe10.5281/zenodo.5948567 (2022). PubMed PMC
Anhuf, D., Bräuning, A., Burkhard, F. & Max, S. Die Vegetationsentwicklung seit dem Höhepunkt der letzten Eiszeit. In Nationalatlas Bundesrepublik Deutschland. Band 3. Klima, Pflanzen- und Tierwelt (ed. Kappas, M.) 88–91 (Spektrum, 2003).
Becker, D., Verheul, J., Zickel, M. & Willmes, C. LGM paleoenvironment of Europe—Map. CRC806-Database10.5880/SFB806.15 (2015).
de Beaulieu J-L, Reille M. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France) Veg. Hist. Archaeobotany. 1992;1:233–242.
Tzedakis PCC, Emerson BCC, Hewitt GMM. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 2013;28:696–704. PubMed
Congruent evolutionary responses of European steppe biota to late Quaternary climate change
figshare
10.6084/m9.figshare.19107944.v1