Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36787794
PubMed Central
PMC9928523
DOI
10.1098/rspb.2022.2238
Knihovny.cz E-resources
- Keywords
- Pleistocene, climate change, habitat, interstadials, mitochondrial DNA, paleoclimate,
- MeSH
- Arvicolinae * genetics MeSH
- Bayes Theorem MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- DNA, Mitochondrial genetics MeSH
- Population Dynamics MeSH
- DNA, Ancient * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
- DNA, Ancient * MeSH
The narrow-headed vole, collared lemming and common vole were the most abundant small mammal species across the Eurasian Late Pleistocene steppe-tundra environment. Previous ancient DNA studies of the collared lemming and common vole have revealed dynamic population histories shaped by climatic fluctuations. To investigate the extent to which species with similar adaptations share common evolutionary histories, we generated a dataset comprised the mitochondrial genomes of 139 ancient and 6 modern narrow-headed voles from several sites across Europe and northwestern Asia covering approximately the last 100 thousand years (kyr). We inferred Bayesian time-aware phylogenies using 11 radiocarbon-dated samples to calibrate the molecular clock. Divergence of the main mtDNA lineages across the three species occurred during marine isotope stages (MIS) 7 and MIS 5, suggesting a common response of species adapted to open habitat during interglacials. We identified several time-structured mtDNA lineages in European narrow-headed vole, suggesting lineage turnover. The timing of some of these turnovers was synchronous across the three species, allowing us to identify the main drivers of the Late Pleistocene dynamics of steppe- and cold-adapted species.
Biogéosciences UMR 6282 CNRS University of Burgundy Dijon France
Borissiak Paleontological Institute Russian Academy of Sciences Moscow Russia
Catalan Institute of Human Paleoecology and Social Evolution Tarragona Spain
Centre of New Technologies University of Warsaw Warsaw Poland
Department of Archaeology Anthropology and Geography University of Winchester Winchester UK
Department of Chemistry G Ciamician Alma Mater Studiorum University of Bologna Bologna Italy
Department of Early Prehistory and Quaternary Ecology and
Department of History and Art History Rovira i Virgili University Tarragona Spain
Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Palaeontology University of Vienna Vienna Austria
Department of Zoology Charles University Prague Czechia
DRAC SRA Poitou Charentes Ministry of Culture and Communications Poitiers France
Faculty of Archaeology Leiden University Leiden The Netherlands
Faculty of Science and Technology Bournemouth University Poole UK
Institute of Archaeology Nicolaus Copernicus University in Toruń Toruń Poland
Institute of Plant and Animal Ecology Ural Branch Russian Academy of Sciences Yekaterinburg Russia
Institute of Systematics and Evolution of Animals Polish Academy of Sciences Cracow Poland
Research Group Prehistory University of Liège Liège Belgium
Senckenberg Centre for Human Evolution and Palaeoenvironment University of Tübingen Tübingen Germany
Senckenberg Research Station of Quaternary Palaeontology Weimar Germany
Wrocław University of Environmental and Life Sciences Wrocław Poland
See more in PubMed
Campos PF, et al. . 2010. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl Acad. Sci. USA 107, 5675-5680. (10.1073/pnas.0907189107) PubMed DOI PMC
Ersmark E, et al. . 2019. Genetic turnovers and northern survival during the last glacial maximum in European brown bears. Ecol. Evol. 9, 5891-5905. (10.1002/ece3.5172) PubMed DOI PMC
Palkopoulou E, et al. . 2013. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B 280, 20131910. (10.1098/rspb.2013.1910) PubMed DOI PMC
Lorenzen ED, et al. . 2011. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359-364. (10.1038/nature10574) PubMed DOI PMC
Cooper A, Turney C, Hughen KA, Barry W, McDonald HG, Bradshaw CJA. 2015. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 1-8. (10.1126/science.aac4315) PubMed DOI
Baca M, Nadachowski A, Lipecki G, Mackiewicz P, Marciszak A, Popović D, Socha P, Stefaniak K, Wojtal P. 2017. Impact of climatic changes in the Late Pleistocene on migrations and extinction of mammals in Europe: four case studies. Geol. Q. 61, 291-304. (10.1101/090878) DOI
Fellows YJA, et al. . 2017. Central European Woolly Mammoth population dynamics: insights from Late Pleistocene mitochondrial genomes. Sci. Rep. 7, 17714. (10.1038/s41598-017-17723-1) PubMed DOI PMC
Brace S, et al. . 2012. Serial population extinctions in a small mammal indicate Late Pleistocene ecosystem instability. Proc. Natl Acad. Sci. USA 109, 20 532-20 536. (10.1073/pnas.1213322109) PubMed DOI PMC
Palkopoulou E, et al. . 2016. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Glob. Change Biol. 22, 1710-1721. (10.1111/gcb.13214) PubMed DOI
Prost S, Smirnov N, Fedorov VB, Sommer RS, Stiller M, Nagel D, Knapp M, Hofreiter M. 2010. Influence of climate warming on arctic mammals? New insights from ancient DNA studies of the collared lemming Dicrostonyx torquatus. PLoS ONE 5, e10447. (10.1371/journal.pone.0010447) PubMed DOI PMC
Lord E, et al. . 2022. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol. Evol. 22, 126. (10.1186/s12862-022-02081-y) PubMed DOI PMC
Baca M, et al. . 2023. Ancient DNA reveals interstadials as a driver of the common vole population dynamics during the last glacial period. J. Biogeogr. 50, 183-196. (10.1111/jbi.14521) DOI
Baca M, et al. . 2020. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – evidence from ancient DNA. Quat. Sci. Rev. 233, 106239. (10.1016/j.quascirev.2020.106239) DOI
Abramson NI, Lebedev VS, Tesakov AS, Bannikova AA. 2009. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): an unexpected result of nuclear gene analysis. Mol. Biol. 43, 834-846. (10.1134/s0026893309050148) PubMed DOI
Maul LC, Markova AK. 2007. Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quat. Int. 160, 81-99. (10.1016/j.quaint.2006.09.010) DOI
Abramson NI, Bodrov SY, Bondareva OV, Genelt-Yanovskiy EA, Petrova TV. 2021. A mitochondrial genome phylogeny of voles and lemmings (Rodentia: Arvicolinae): evolutionary and taxonomic implications. PLoS ONE 16, 1-28. (10.1371/journal.pone.0248198) PubMed DOI PMC
Kryštufek B, Shenbrot G. 2022. Voles and lemmings (Arvicolinae) of the palaearctic region. Maribor, Slovenia: University of Maribor, University Press.
Smirnov NG, Kuz'mina E, Golovachev IB, Fadeeva TV. 2007. The narrow-skulled vole (Microtus gregalis Pall.) in the dynamics of zonal rodent communities of northern Eurasia. Russ. J. Ecol. 38, 106-111. (10.1134/S1067413607020075) DOI
Suttcliffe AJ, Kowalski K. 1976. Pleistocene rodents of the British Isles. Bull. Br. Mus. (Nat. Hist.) Geol. 27, 31-147.
Royer A, Montuire S, Legendre S, Discamps E, Jeannet M, Lécuyer C. 2016. Investigating the influence of climate changes on rodent communities at a regional-scale (MIS 1–3, Southwestern France). PLoS ONE 11, e0145600. (10.1371/journal.pone.0145600) PubMed DOI PMC
Baca M, Popović D, Lemanik A, Baca K, Horáček I, Nadachowski A. 2019. Highly divergent lineage of narrow-headed vole from the Late Pleistocene Europe. Sci. Rep. 9, 17799. (10.1038/s41598-019-53937-1) PubMed DOI PMC
Petrova T V., Tesakov AS, Kowalskaya YM, Abramson NI. 2016. Cryptic speciation in the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Rodentia: Cricetidae). Zool. Scr. 45, 618-629. (10.1111/zsc.12176) DOI
Martínková N, et al. . 2013. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205-5220. (10.1111/mec.12462) PubMed DOI PMC
Herman JS, Searle JB. 2011. Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc. R. Soc. B 278, 3601-3607. (10.1098/rspb.2011.0321) PubMed DOI PMC
Rhodes SE, Conard NJ. 2021. A quantitative paleoclimatic reconstruction of the non-analogue environment of oxygen isotope stage 3: new data from small mammal records of southwestern Germany. Archaeol. Anthropol. Sci. 13, 216-234. (10.1007/s12520-021-01363-8) DOI
Nadachowski A. 1989. Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriol. 34, 37-53. (10.4098/at.arch.89-2). DOI
Horáček I, Ložek V. 1988. Palaeozoology and the Mid-European Quaternary past: scope of the approach and selected results. Rozpravy ČSAV, r. MPV (Praha) 98(4), 1-106.
Dabney J, et al. . 2013. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15 758-15 763. (10.1073/pnas.1314445110) PubMed DOI PMC
Rohland N, Glocke I, Aximu-Petri A, Meyer M. 2018. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447-2461. (10.1038/s41596-018-0050-5) PubMed DOI
Meyer M, Kircher M. 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 5, t5448. (10.1101/pdb.prot5448) PubMed DOI
Gansauge MT, Aximu-Petri A, Nagel S, Meyer M. 2020. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279-2300. (10.1038/s41596-020-0338-0) PubMed DOI
Horn S. 2012. Target enrichment via DNA hybridization capture. In Ancient DNA. Methods and protocols. (eds Shapiro B, Hofreiter M), pp. 189-195. Totowa, NJ: Humana Press.
Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 1-7. (10.1186/s13104-016-1900-2) PubMed DOI PMC
Feuerborn TR, et al. . 2020. Competitive mapping allows for the identification and exclusion of human DNA contamination in ancient faunal genomic datasets. BMC Genom. 21, 1-10. (10.1186/s12864-020-07229-y) PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. 2013. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682-1684. (10.1093/bioinformatics/btt193) PubMed DOI PMC
Fewlass H, Tuna T, Fagault Y, Hublin JJ, Kromer B, Bard E, Talamo S. 2019. Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Sci. Rep. 9, 1-11. (10.1038/s41598-019-41557-8) PubMed DOI PMC
Wacker L, Němec M, Bourquin J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. B 268, 931-934. (10.1016/j.nimb.2009.10.067) DOI
Synal HA, Stocker M, Suter M. 2007. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7-13. (10.1016/j.nimb.2007.01.138) DOI
Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360. (10.2458/azu_js_rc.v51i1.3494) DOI
Reimer PJ, et al. . 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725-757. (10.1017/rdc.2020.41) DOI
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, msw260. (10.1093/molbev/msw260) PubMed DOI
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 1-5. (10.1093/ve/vey016) PubMed DOI PMC
Duchene S, Lemey P, Stadler T, Ho SYW, Duchene DA, Dhanasekaran V, Baele G. 2020. Bayesian evaluation of temporal signal in measurably evolving populations. Mol. Biol. Evol. 37, 3363-3379. (10.1093/molbev/msaa163) PubMed DOI PMC
Duchêne S, Duchêne D, Holmes EC, Ho SYW. 2015. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895-1906. (10.1093/molbev/msv056) PubMed DOI
Petrova TV, Zakharov ES, Samiya R, Abramson NI. 2015. Phylogeography of the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Cricetidae, Rodentia) inferred from mitochondrial cytochrome b sequences: an echo of Pleistocene prosperity. J. Zool. Syst. Evol. Res. 53, 97-108. (10.1111/jzs.12082) DOI
Jacobs Z, et al. . 2019. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature 565, 594-599. (10.1038/s41586-018-0843-2) PubMed DOI
Ho SYW, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A. 2011. Time-dependent rates of molecular evolution. Mol. Ecol. 20, 3087-3101. (10.1111/j.1365-294X.2011.05178.x) PubMed DOI
Ho SYW, Saarma U, Barnett R, Haile J, Shapiro B. 2008. The effect of inappropriate calibration: three case studies in molecular ecology. PLoS ONE 3, e1615. (10.1371/journal.pone.0001615) PubMed DOI PMC
Lisiecki LE, Raymo ME. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. (10.1029/2004PA001071) DOI
Reille M, De Beaulieu JL, Svobodova H, Andrieu-Ponel V, Goeury C. 2000. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). J. Quat. Sci. 15, 665-685. (10.1002/1099-1417(200010)15:7<665::AID-JQS560>3.0.CO;2-G) DOI
Velichko AA, Faustova MA, Pisareva VV, Gribchenko YUN, Sudakova NG, Lavrentiev N V. 2011. Glaciations of the East European Plain. Distribution and chronology. Dev. Quat. Sci. 15, 337-359. (10.1016/B978-0-444-53447-7.00026-X) DOI
Spratt RM, Lisiecki LE. 2016. A Late Pleistocene sea level stack. Clim. Past 12, 1079-1092. (10.5194/cp-12-1079-2016) DOI
Helmens KF. 2014. The Last Interglacial-Glacial cycle (MIS 5–2) re-examined based on long proxy records from central and northern Europe. Quat. Sci. Rev. 86, 115-123. (10.1016/j.quascirev.2013.12.012) DOI
Gutier F, Andrieu-Ponel V, de Beaulieu J-L, Cheddadi R, Calvez M, Ponel P, Reille M, Keller T, Goeury C. 2003. The last climatic cycles in Western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records. Quat. Int. 111, 59-74. (10.1016/S1040-6182(03)00015-6) DOI
Kirschner P, et al. . 2022. Congruent evolutionary responses of European steppe biota to late Quaternary climate change. Nat. Commun. 13, 1-11. (10.1038/s41467-022-29267-8) PubMed DOI PMC
Markova A, Puzachenko A. 2018. Preliminary analysis of European small mammal faunas of the Eemian interglacial: species composition and species diversity at a regional scale. Quaternary 1, 1-21. (10.3390/quat1020009) DOI
Foury Y, Desclaux E, Daujeard C, Defleur A, Moncel M-H, Raynal J-P. 2016. Evolution des faunes de rongeurs en moyenne vallée du Rhône (rive droite, Ardèche, France) au cours du pléistocène moyen final et du pléistocène supérieur ancien, du mis 6 au mis 4. Quaternaire 27, 55-79. (10.4000/quaternaire.7527) DOI
Luzi E, Blanco-Lapaz Á, Rhodes SE, Conard NJ. 2022. Paleoclimatic and paleoenvironmental reconstructions based on the small vertebrates from the Middle Paleolithic of Hohle Fels Cave, SW Germany. Archaeol. Anthropol. Sci. 5. (10.1007/s12520-022-01568-5) DOI
Socha P. 2014. Rodent palaeofaunas from Biśnik Cave (Kraków-Częstochowa Upland, Poland): Palaeoecological, palaeoclimatic and biostratigraphic reconstruction. Quat. Int. 326–327, 64-81. (10.1016/j.quaint.2013.12.027) DOI
Stewart JR, Lister AM, Barnes I, Dalén L. 2010. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B 277, 661-671. (10.1098/rspb.2009.1272) PubMed DOI PMC
Svensson A, et al. . 2008. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47-57. (10.5194/cp-4-47-2008) DOI
Kosintsev P, et al. . 2019. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evol. 3, 31-38. (10.1038/s41559-018-0722-0) PubMed DOI
Soubrier J, et al. . 2016. Early cave art and ancient DNA record the origin of European bison. Nat. Commun. 7, 13158. (10.1038/ncomms13158) PubMed DOI PMC
Rey-Iglesia A, et al. . 2021. Exploring the phylogeography and population dynamics of the giant deer (Megaloceros giganteus) using Late Quaternary mitogenomes. Proc. R. Soc. B 288, 20201864. (10.1098/rspb.2020.1864) PubMed DOI PMC
Higham T, et al. . 2014. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306-309. (10.1038/nature13621) PubMed DOI
Vandenberghe J, van der Plicht J. 2016. The age of the Hengelo interstadial revisited. Quat. Geochronol. 32, 21-28. (10.1016/j.quageo.2015.12.004) DOI
Moine O, Antoine P, Hatté C, Landais A, Mathieu J, Prud'homme C, Rousseau DD. 2017. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proc. Natl Acad. Sci. USA 114, 6209-6214. (10.1073/pnas.1614751114) PubMed DOI PMC
Cooper A, et al. . 2021. A global environmental crisis 42,000 years ago. Science 374, 811-818. (10.1126/science.abi8330) PubMed DOI
Marciszak A, Schouwenburg C, Lipecki G, Talamo S, Shpansky A, Malikov D, Gornig W. 2019. Steppe brown bear Ursus arctos ‘priscus’ from the Late Pleistocene of Europe. Quat. Int. 534, 158-170. (10.1016/j.quaint.2019.02.042) DOI
Michczyńska DJ, Dzieduszyńska DA, Petera-Zganiacz J, Wachecka-Kotkowska L, Krzyszkowski D, Wieczorek D, Ludwikowska-Kędzia M, Gębica P, Starkel L. 2022. Climatic oscillations during MIS 3–2 recorded in the sets of 14C and OSL dates—a study based on data from Poland. Radiocarbon 64(6), 1373-1386. (10.1017/RDC.2022.69) DOI
Baca M, et al. . 2023. Aligned and curated mtDNA sequences from Baca et al. 2023; Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Dryad Digital Repository. (10.5061/dryad.kh1893295) PubMed DOI PMC
Baca M, et al. . 2023. Ancient DNA of narrow-headed vole reveal common features of the Late Pleistocene population dynamics in cold-adapted small mammals. Figshare. (10.6084/m9.figshare.c.6423382) PubMed DOI PMC