Highly divergent lineage of narrow-headed vole from the Late Pleistocene Europe
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31780683
PubMed Central
PMC6882798
DOI
10.1038/s41598-019-53937-1
PII: 10.1038/s41598-019-53937-1
Knihovny.cz E-zdroje
- MeSH
- Arvicolinae klasifikace genetika MeSH
- cytochromy b genetika MeSH
- fylogeneze MeSH
- fylogeografie metody MeSH
- genetická variace * MeSH
- lesy MeSH
- mitochondriální DNA genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- tundra MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Rusko MeSH
- Názvy látek
- cytochromy b MeSH
- mitochondriální DNA MeSH
During the Late Pleistocene, narrow-headed voles (Lasiopodomys gregalis) inhabited Eurasia's vast territories, frequently becoming the dominant small mammal species among steppe-tundra communities. We investigated the relationship between this species' European and Asiatic populations by sequencing the mtDNA genomes of two extant specimens from Russia and 10 individuals from five Central European sites, dated to the post-LGM period. Phylogenetic analyses based on a large portion of mtDNA genomes highly supported the positioning of L. gregalis within Arvicolinae. The phylogeny based on mtDNA cytochrome b sequences revealed a deep divergence of European narrow-headed voles from Asiatic ones and their sister position against the extant L. gregalis and L. raddei. The divergence of the European lineage was estimated to a minimum 230 thousand years ago. This suggest, contrary to the current biogeographic hypotheses, that during the interglacial periods narrow-headed vole did not retreat from Europe but survived the unfavourable conditions within the refugial areas. Based on this result, we propose to establish a cryptic species status for the Late Pleistocene European narrow-headed vole and to name this taxon Lasiopodomys anglicus.
Centre of New Technologies University of Warsaw Banacha 2c 02 097 Warsaw Poland
Department of Zoology Charles University Viničná 7 128 44 Prague Czech Republic
Zobrazit více v PubMed
Shenbrot, G. I. & Krasnov, B. R.
López-García JM, et al. Palaeoenvironmental and palaeoclimatic reconstruction of the Latest Pleistocene of L’Arbreda Cave (Serinyà, Girona, northeastern Iberia) inferred from the small-mammal (insectivore and rodent) assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015;435:244–253. doi: 10.1016/j.palaeo.2015.06.022. DOI
Laplana C, et al. Cold-climate rodent indicators for the Late Pleistocene of Central Iberia: New data from the Buena Pinta Cave (Pinilla del Valle, Madrid Region, Spain) C.R. Palevol. 2016;15:696–706. doi: 10.1016/j.crpv.2015.05.010. DOI
Suttcliffe AJ, Kowalski K. Pleistocene rodents of the British Isles. Bull. Br. Museum (Natural Hist.) Geol. 1976;27:31–147.
López-García JM, Luzi E, Peresani M. Middle to Late Pleistocene environmental and climatic reconstruction of the human occurrence at Grotta Maggiore di San Bernardino (Vicenza, Italy) through the small-mammal assemblage. Quat. Sci. Rev. 2017;168:42–54. doi: 10.1016/j.quascirev.2017.05.005. DOI
Luzi, E. Morphological and Morphometric Variations in Middle and Late Pleistocene
López-García JM, Berto C, Peresani M. Environmental and climatic context of the hominin occurrence in northeastern Italy from the late Middle to Late Pleistocene inferred from small-mammal assemblages. Quaternary Science Reviews. 2019;216:18–33. doi: 10.1016/j.quascirev.2019.05.025. DOI
Bogićević K, Nenadić D, Mihailović D. Late Pleistocene voles (Arvicolinae, Rodentia) from the Baranica Cave (Serbia) Geol. Carpathica. 2012;63:83–94. doi: 10.2478/v10096-012-0006-6. DOI
Popov, V. In
Markova AK. Small mammals from Palaeolithic sites of the Crimea. Quat. Int. 2011;231:22–27. doi: 10.1016/j.quaint.2010.07.016. DOI
Ponomarev D, Puzachenko A. Changes in the morphology and morphological diversity of the first lower molar of narrow-headed voles (Microtus gregalis, Arvicolinae, Rodentia) from northeastern European Russia since the Late Pleistocene. Quat. Int. 2017;436:239–252. doi: 10.1016/j.quaint.2015.05.047. DOI
Royer A, et al. Investigating the influence of climate changes on rodent communities at a regional-scale (MIS 1-3, Southwestern France) PLoS One. 2016;11:e0145600. doi: 10.1371/journal.pone.0145600. PubMed DOI PMC
López-García JM, et al. Palaeoenvironmental and palaeoclimatic reconstruction of the Middle to Late Pleistocene sequence of Scladina Cave (Namur, Belgium) using the small-mammal assemblages. Hist. Biol. 2017;29:1125–1142. doi: 10.1080/08912963.2017.1288229. DOI
Nadachowski A. Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriol. (Warsz). 1989;34:37–53. doi: 10.4098/AT.arch.89-2. DOI
Rekovets, L. I. & Krokhmal, A. I.
Petrova TV, Zakharov ES, Samiya R, Abramson NI. Phylogeography of the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Cricetidae, Rodentia) inferred from mitochondrial cytochrome b sequences: an echo of Pleistocene prosperity. J. Zool. Syst. Evol. Res. 2015;53:97–108. doi: 10.1111/jzs.12082. DOI
Petrova TV, Tesakov AS, Kowalskaya YM, Abramson NI. Cryptic speciation in the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Rodentia: Cricetidae) Zool. Scr. 2016;45:618–629. doi: 10.1111/zsc.12176. DOI
Prost S, et al. Losing ground: past history and future fate of Arctic small mammals in a changing climate. Glob. Chang. Biol. 2013;19:1854–64. doi: 10.1111/gcb.12157. PubMed DOI
Rekovets, L. I. New subspecies of narrow-headed vole (
Chaline, J.
Nadachowski, A.
Smirnov, N. G., Bolshakov, V. N. & Borodin, A. V.
Bannikova AA, et al. Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biol. J. Linn. Soc. 2010;99:595–613. doi: 10.1111/j.1095-8312.2009.01378.x. DOI
Hinton, M. A. C.
Ellerman, J. R. & Morrison-Scott, T. C. S.
Rekovets L, Nadachowski A. Pleistocene voles (Arvicolidae) of the Ukraine. Paleontol. i Evol. 1995;28–29:145–245.
Maul LC, Markova AK. Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quat. Int. 2007;160:81–99. doi: 10.1016/j.quaint.2006.09.010. DOI
Fejfar O, Horáček I. Zur Entwicklung der Kleinsäugerfaunen im Villanium und Alt-Biharium auf dem Gebiet der ČSSR. Schriftenr. für geologische Wissenschaften. 1983;19/20:111–207.
Nadachowski A. Lower Pleistocene rodents of Poland: faunal succession and biostratigraphy. Quartärpaläontologie. 1990;8:215–223.
Markova AK. Eastern European rodent (Rodentia, Mammalia) faunas from the Early-Middle Pleistocene transition. Quat. Int. 2005;131:71–77. doi: 10.1016/j.quaint.2004.07.020. DOI
Mezhzherin SV, Zykov AE, Morozov-Leonov SY. Biochemical variation and genetic divergence of Palearctic voles (Arvicolidae). Meadow voles Microtus Schrank, 1798, snow voles, Chionomys Miller, 1908, water voles, Arvicola Lacepede, 1799. Genetica. 1993;29:28–41.
Jaarola M, et al. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2004;33:647–663. doi: 10.1016/j.ympev.2004.07.015. PubMed DOI
Abramson NI, Lebedev VS, Tesakov AS, Bannikova AA. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): An unexpected result of nuclear gene analysis. Mol. Biol. 2009;43:834–846. doi: 10.1134/S0026893309050148. PubMed DOI
Martínková N, Moravec J. Multilocus phylogeny of arvicoline voles (Arvicolini, Rodentia) shows small tree terrace size. Folia Zool. 2012;61:254–267. doi: 10.25225/fozo.v61.i3.a10.2012. DOI
Pardiñas, U.
Ho SYW, et al. Time-dependent rates of molecular evolution. Mol. Ecol. 2011;20:3087–3101. doi: 10.1111/j.1365-294X.2011.05178.x. PubMed DOI
Martínková N, et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 2013;22:5205–5220. doi: 10.1111/mec.12462. PubMed DOI PMC
Herman JS, Searle JB. Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc. R. Soc. B Biol. Sci. 2011;278:3601–3607. doi: 10.1098/rspb.2011.0321. PubMed DOI PMC
Herman JS, et al. Land-Bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS One. 2014;9:e103949. doi: 10.1371/journal.pone.0103949. PubMed DOI PMC
Palkopoulou E, et al. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings. Glob. Chang. Biol. 2016;22:1710–1721. doi: 10.1111/gcb.13214. PubMed DOI
Molak M, Lorenzen ED, Shapiro B, Ho SYW. Phylogenetic estimation of timescales using ancient DNA: the effects of temporal sampling scheme and uncertainty in sample ages. Mol. Biol. Evol. 2013;30:253–62. doi: 10.1093/molbev/mss232. PubMed DOI
Chan YL, Anderson CNK, Hadly EA. Bayesian estimation of the timing and severity of a population bottleneck from ancient DNA. PLoS Genet. 2006;2:e59. doi: 10.1371/journal.pgen.0020059. PubMed DOI PMC
Welch JJ, Bininda-Emonds OR, Bromham L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 2008;8:53. doi: 10.1186/1471-2148-8-53. PubMed DOI PMC
Horn S, et al. Mitochondrial genomes reveal slow rates of molecular evolution and the timing of speciation in beavers (Castor), one of the largest rodent species. PLoS One. 2011;6:e14622. doi: 10.1371/journal.pone.0014622. PubMed DOI PMC
Paupério J, et al. Cryptic speciation in the field vole: A multilocus approach confirms three highly divergent lineages in Eurasia. Mol. Ecol. 2012;21:6015–6032. doi: 10.1111/mec.12024. PubMed DOI
Markova AK. Paleolandscape reconstruction of Likhvin Interglacial by the data of Eastern European small mammals. Izv. RAN, Ser. Geogr. 2004;2:39–51.
Mahmoudi A, Darvish J, Aliabadian M, Moghaddam Y, Kryštufek B. New insight into the cradle of the grey voles (subgenus Microtus) inferred from mitochondrial cytochrome b sequences. Mammalia. 2017;81:583–593. doi: 10.1515/mammalia-2016-0001. DOI
Lagerholm VK, et al. On the origin of the Norwegian lemming. Mol. Ecol. 2014;23:2060–2071. doi: 10.1111/mec.12698. PubMed DOI
Nehring A. Fossile Lemminge und Arvicolen aus den Diluviallehm von Thiede bei Wolfebüttel. Zeitschrift für die Gesammten. Naturwissenschaften. 1875;45:1–28.
Woldřich JN. Uebersicht der Wirbelthierfaunades ‘Böhmischen Massivs’ während der anthropozoischen Epoche. Jahrb. d. k. k. geol. Reichsanstalt. 1897;47:393–428.
Newton ET. The vertebrate fauna collected by Mr Lewis Abbot from the fissure near Ightham, Kent. Q. Jl. Geol. Soc. Lond. 1894;50:188–210. doi: 10.1144/GSL.JGS.1894.050.01-04.17. DOI
Hinton MAC. Some new late Pleistocene voles and Lemmings. Ann. Mag. Nat. Hist. 1910;6:34–39. doi: 10.1080/00222931008692819. DOI
Horáček I, Sánchez-Marco A. Comments on the Weichselian small mammal assemblages in Czechoslovakia and their stratigraphical interpretation. Neues Jahrb. für Geol. und Paläontologie. 1984;9:560–576.
van Kolfschoten, T. in
Horáček, I. & Sazelova, S. in
Nadachowski A, Valde-Nowak P. New Late Pleistocene faunal assemblages from Podhale Basin, Western Carpathians, Poland: preliminary results. Acta Zool. cracoviensia. 2015;58:181–194. doi: 10.3409/azc.58_2.181. DOI
Nadachowski, A.
Ramsey CB, Lee S. Recent and planned developments of the Program OxCal. Radiocarbon. 2013;55:720–730. doi: 10.1017/S0033822200057878. DOI
Reimer PJ, et al. Intcal13 and marine13 radiocarbon age calibration curves 0 – 50,000 years cal bp. Radiocarbon. 2013;55:1869–1887. doi: 10.2458/azu_js_rc.55.16947. DOI
Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA. 2013;110:15758–63. doi: 10.1073/pnas.1314445110. PubMed DOI PMC
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;5:t5448. doi: 10.1101/pdb.prot5448. PubMed DOI
Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil-DNA-glycosylase treatment for screening of ancient. DNA. Philos. Trans. R. Soc. B Biol. Sci. 2014;370:20130624–20130624. doi: 10.1098/rstb.2013.0624. PubMed DOI PMC
Horn, S. In
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:1–7. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2016;45:gkw955. doi: 10.1093/nar/gkw955. PubMed DOI PMC
Bernt M, et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Li H, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Milne I, et al. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 2013;14:193–202. doi: 10.1093/bib/bbs012. PubMed DOI
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:msw260. doi: 10.1093/molbev/msw260. PubMed DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Aberer AJ, Kobert K, Stamatakis A. ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-Genome Era. Mol. Biol. Evol. 2014;31:2553–2556. doi: 10.1093/molbev/msu236. PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Baele G, et al. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol. Biol. Evol. 2012;29:2157–67. doi: 10.1093/molbev/mss084. PubMed DOI PMC
Gill MS, et al. Improving bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 2013;30:713–724. doi: 10.1093/molbev/mss265. PubMed DOI PMC
Rozas J, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI