The Tien Shan vole (Microtus ilaeus; Rodentia: Cricetidae) as a new species in the Late Pleistocene of Europe
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
34824815
PubMed Central
PMC8601874
DOI
10.1002/ece3.8289
PII: ECE38289
Knihovny.cz E-resources
- Keywords
- Late Pleistocene, Tien Shan vole, ancient DNA, grey voles, mitochondrial DNA,
- Publication type
- Journal Article MeSH
Grey voles (subgenus Microtus) represent a complex of at least seven closely related and partly cryptic species. The range of these species extends from the Atlantic to the Altai Mountains, but most of them occur east of the Black Sea. Using ancient DNA analyses of the Late Pleistocene specimens, we identified a new mtDNA lineage of grey voles in Europe. Phylogenetic analysis of mitochondrial DNA cytochrome b sequences from 23 voles from three caves, namely, Emine-Bair-Khosar (Crimea, Ukraine), Cave 16 (Bulgaria), and Bacho Kiro (Bulgaria), showed that 14 specimens form a previously unrecognized lineage, sister to the Tien Shan vole. The average sequence divergence of this lineage and the extant Tien Shan vole was 4.8%, which is similar to the divergence of grey vole forms, which are considered distinct species or being on the verge of speciation; M. arvalis and M. obscurus or M. mystacinus and M. rossiaemeridionalis. We estimated the time to the most recent common ancestor of the grey voles to be 0.66 Ma, which is over twice the recent estimates, while the divergence of the extant Tien Shan vole and the new lineage to be 0.29 Ma. Our discovery suggests that grey voles may have been more diversified in the past and that their ranges may have differed substantially from current ones. It also underlines the utility of ancient DNA to decipher the evolutionary history of voles.
Centre of New Technologies University of Warsaw Warszawa Poland
Department of Chemistry G Ciamician University of Bologna Bologna Italy
Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sophia Bulgaria
Institute of Systematics and Evolution of Animals Polish Academy of Sciences Kraków Poland
Institute of Vertebrate Biology Academy of Sciences of Czech Republic Brno Czech Republic
See more in PubMed
Allen, R. , Ryan, H. , Davis, B. W. , King, C. , Frantz, L. , Irving‐Pease, E. , Barnett, R. , Linderholm, A. , Loog, L. , Haile, J. , Lebrasseur, O. , White, M. , Kitchener, A. C. , Murphy, W. J. , & Larson, G. (2020). A mitochondrial genetic divergence proxy predicts the reproductive compatibility of mammalian hybrids. Proceedings of the Royal Society B: Biological Sciences, 287, 20200690. 10.1098/rspb.2020.0690 PubMed DOI PMC
Baca, M. , Nadachowski, A. , Lipecki, G. , Mackiewicz, P. , Marciszak, A. , Popović, D. , Socha, P. , Stefaniak, K. , & Wojtal, P. (2017). Impact of climatic changes in the Late Pleistocene on migrations and extinctions of mammals in Europe: four case studies. Geological Quarterly, 61, 291–304. 10.7306/gq.1319 DOI
Baca, M. , Popović, D. , Baca, K. , Lemanik, A. , Doan, K. , Horáček, I. , López‐García, J. M. , Bañuls‐Cardona, S. , Pazonyi, P. , Desclaux, E. , Crégut‐Bonnoure, E. , Berto, C. , Mauch Lenardić, J. , Miękina, B. , Murelaga, X. , Cuenca‐Bescós, G. , Krajcarz, M. , Marković, Z. , Petculescu, A. , & Nadachowski, A. (2020). Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quaternary Science Reviews, 233, 106239. 10.1016/j.quascirev.2020.106239 DOI
Baca, M. , Popović, D. , Lemanik, A. , Baca, K. , Horáček, I. , & Nadachowski, A. (2019). Highly divergent lineage of narrow‐headed vole from the Late Pleistocene Europe. Scientific Reports, 9, 17799. 10.1038/s41598-019-53937-1 PubMed DOI PMC
Baele, G. , Lemey, P. , & Suchard, M. A. (2016). Genealogical working distributions for Bayesian model testing with phylogenetic uncertainty. Systematic Biology, 65, 250–264. 10.1093/sysbio/syv083 PubMed DOI PMC
Bannikova, A. A. , Lebedev, V. S. , Lissovsky, A. A. , Matrosova, V. , Abramson, N. I. , Obolenskaya, E. V. , & Tesakov, A. S. (2010). Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biological Journal of the Linnean Society, 99, 595–613. 10.1111/j.1095-8312.2009.01378.x DOI
Barbosa, S. , Paupério, J. , Pavlova, S. V. , Alves, P. C. , & Searle, J. B. (2018). The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Molecular Phylogenetics and Evolution, 125, 85–92. 10.1016/j.ympev.2018.03.017 PubMed DOI
Berto, C. , Nadachowski, A. , Pereswiet‐Soltan, A. , Lemanik, A. , & Kot, M. (2021). The Middle Pleistocene small mammals from the lower layers of Tunel Wielki Cave (Kraków‐Częstochowa Upland): An Early Toringian assemblage in Poland. Quaternary International, 577, 52–70. 10.1016/j.quaint.2020.10.023 DOI
Bikchurina, T. I. , Golenishchev, F. N. , Kizilova, E. A. , Mahmoudi, A. , & Borodin, P. M. (2021). Reproductive isolation between taxonomically controversial forms of the gray voles (Microtus, Rodentia; Arvicolinae): Cytological mechanisms and taxonomical implications. Frontiers in Genetics, 12, 653837. 10.3389/fgene.2021.653837 PubMed DOI PMC
Bogićević, K. , Nenadić, D. , & Mihailović, D. (2012). Late Pleistocene voles (Arvicolinae, Rodentia) from the Baranica Cave (Serbia). Geologica Carpathica, 63, 83–94. 10.2478/v10096-012-0006-6 DOI
Bogićević, K. , Nenadić, D. , Milošević, S. , Mihailović, D. , Vlastić, S. , & Tošović, R. (2017). A Late Pleistocene rodent fauna (Mammalia: Rodentia) from Hadži Prodanova Cave near Ivanjica (western Serbia). Rivista Italiana di Paleontologia e Stratigrafia, 123, 23–38.
Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337–360. 10.1017/S0033822200033865 DOI
Cooper, A. , Turney, C. , Hughen, K. A. , Brook, B. W. , McDonald, H. G. , & Bradshaw, C. J. A. (2015). Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science, 349, 602–606. 10.1126/science.aac4315 PubMed DOI
Cuenca‐Bescós, G. , & Laplana, C. (1995). Evolución de Iberomys (Arvicolidae, Rodentia, Mammalia) durante el Cuaternario español. In López G., Obrador A., & Vicens E. (Eds.), XI Jornadas de Paleontología (pp. 69–72). Sociedad Española de Paleontología.
Dabney, J. , Knapp, M. , Glocke, I. , Gansauge, M. T. , Weihmann, A. , Nickel, B. , Valdiosera, C. , García, N. , Pääbo, S. , Arsuaga, J. L. , & Meyer, M. (2013). Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 110, 15758–15763. 10.1073/pnas.1314445110 PubMed DOI PMC
Darriba, D. , Taboada, G. L. , Doallo, R. , & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772. 10.1038/nmeth.2109 PubMed DOI PMC
Dierckxsens, N. , Mardulyn, P. , & Smits, G. (2017). NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research, 45(9), e18. PubMed PMC
Doan, K. , Mackiewicz, P. , Sandoval‐Castellanos, E. , Stefaniak, K. , Ridush, B. , Dalén, L. , Wȩgleński, P. , & Stankovic, A. (2018). The history of Crimean red deer population and Cervus phylogeography in Eurasia. Zoological Journal of the Linnean Society, 183, 208–225.
Duchene, S. , Lemey, P. , Stadler, T. , Ho, S. Y. W. , Duchene, D. A. , Dhanasekaran, V. , & Baele, G. (2020). Bayesian evaluation of temporal signal in measurably evolving populations. Molecular Biology and Evolution, 37, 3363–3379. 10.1093/molbev/msaa163 PubMed DOI PMC
Duckett, D. J. , Sullivan, J. , Pirro, S. , & Carstens, B. C. (2021). Genomic resources for North American water vole (Microtus richardsoni) and the montane vole (Microtus montanus). bioRxiv. 10.1101/2021.04.04.438380 PubMed DOI PMC
Fejfar, O. (1965). Die unter‐mittelpleistozäne Mikromammalier‐Fauna aus Dobrkovici, Südböhmen. Berichte der Deutschen Gesellschaft für Geologische Wissenschaftenhrsg. vom Vorstand Reihe A, Geologie und Paläontologie, 10, 57–65.
Ferreira, M. A. , & Suchard, M. A. (2008). Bayesian analysis of elapsed times in continuous‐time Markov chains. Canadian Journal of Statistics, 36, 355–368.
Fewlass, H. , Talamo, S. , Tuna, T. , Fagault, Y. , Kromer, B. , Hoffmann, H. , Pangrazzi, C. , Hublin, J. J. , & Bard, E. (2018). Size matters: Radiocarbon dates of <200 μg ancient collagen samples with AixMICADAS and its gas ion source. Radiocarbon, 60, 425–439.
Fewlass, H. , Talamo, S. , Wacker, L. , Kromer, B. , Tuna, T. , Fagault, Y. , Bard, E. , McPherron, S. P. , Aldeias, V. , Maria, R. , & Martisius, N. L. (2020). A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nature Ecology and Evolution, 4(6), 794–801. 10.1038/s41559-020-1136-3 PubMed DOI
Fewlass, H. , Tuna, T. , Fagault, Y. , Hublin, J. J. , Kromer, B. , Bard, E. , & Talamo, S. (2019). Pretreatment and gaseous radiocarbon dating of 40–100 mg archaeological bone. Scientific Reports, 9, 1–11. 10.1038/s41598-019-41557-8 PubMed DOI PMC
Giaccio, B. , Isaia, R. , Fedele, F. G. , Di Canzio, E. , Hoffecker, J. , Sinitsyn, R. A. , Anikovich, M. , Lisitsyn, S. N. , & Popov, V. V. (2008). The Campanian Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for the Early Upper Palaeolitihic in southern Italy and eastern Europe. Journal of Volcanology and Geothermal Research, 177, 208–226. 10.1016/j.jvolgeores.2007.10.007 DOI
Golenishchev, F. , Malikov, V. , Petrova, T. , Bodrov, S. , & Abramson, N. (2019). Toward assembling a taxonomic puzzle: Case study of Iranian gray voles of the subgenus Microtus (Rodentia, Cricetidae). Mammalian Biology, 94, 98–105. 10.1016/j.mambio.2018.06.007 DOI
Herman, J. S. , & Searle, J. B. (2011). Post‐glacial partitioning of mitochondrial genetic variation in the field vole. Proceedings of the Royal Society B: Biological Sciences, 278, 3601–3607. PubMed PMC
Ho, S. Y. W. , Lanfear, R. , Bromham, L. , Phillips, M. J. , Soubrier, J. , Rodrigo, A. G. , & Cooper, A. (2011). Time‐dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101. PubMed
Hofreiter, M. , & Stewart, J. (2009). Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology, 19, R584–R594. 10.1016/j.cub.2009.06.030 PubMed DOI
Horn, S. (2012). Target enrichment via DNA hybridisation capture. In Shapiro B. & Hofreiter M. (Eds.), Methods in molecular biology (Clifton, N.J.). Ancient DNA. Methods and protocols (pp. 189–195). Humana Press.
Ivanova, S. , Gurova, M. , Spassov, N. , Hristova, L. , Tzankov, N. , Popov, V. , Marinova, E. , Makedonska, J. , Smith, V. , Ottoni, C. , & Lewis, M. (2016). Magura Cave, Bulgaria: A multidisciplinary study of Late Pleistocene human palaeoenvironment in the Balkans. Quaternary International, 415, 86–108. 10.1016/j.quaint.2015.11.082 DOI
Jaarola, M. , Martínková, N. , Gündüz, İ. , Brunhoff, C. , Zima, J. , Nadachowski, A. , Amori, G. , Bulatova, N. S. , Chondropoulos, B. , Fraguedakis‐Tsolis, S. , González‐Esteban, J. , López‐Fuster, M. J. , Kandaurov, A. S. , Kefelioğlu, H. , da Luz, M. M. , Villate, I. , & Searle, J. B. (2004). Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Molecular Phylogenetic and Evolution, 33, 647–663. 10.1016/j.ympev.2004.07.015 PubMed DOI
Kochev, V. A. (1986). Species criteria for M1 molars of Microtus agrestis, M. arvalis, M. oeconomus, M. gregalis, M. middendorfi and M. hyperboreus . Vestnik Zoologii, 3, 40–45.
Kowalski, K. (2001). Pleistocene rodents of Europe. Folia Quaternaria, 72, 1–389.
Kozłowski, J. K. (1982). Excavation in the Bacho Kiro Cave. Final raport. Warszawa. Państwowe Wydawnictwo Naukowe.
Krokhmal, A. I. , & Rekovets, L. I. (2010). Localities of small mammals from the Pleistocene of Ukraine and adjacent territories. Kyiv, LAT & K. (in Russian).
Kumar, S. , Stecher, G. , Li, M. , Knyaz, C. , & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Lemanik, A. , Baca, M. , Wertz, K. , Socha, P. , Popović, D. , Tomek, T. , Lipecki, G. , Kraszewska, A. , Miękina, B. , Żeromska, A. , Pereswiet‐Soltan, A. , Szyndlar, Z. , Cieśla, M. , Valde‐Nowak, P. , Mackiewicz, P. , & Nadachowski, A. (2020). The impact of major warming at 14.7 ka on environmental changes and activity of Final Palaeolithic hunters at a local scale (Orawa‐Nowy Targ Basin, Western Carpathians, Poland). Archaeological and Anthropological Sciences, 12, 66. 10.1007/s12520-020-01020-6 DOI
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv:1303.3997v2 00, 1–3.
Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. R. , Durbin, R. , & Subgroup 1000 Genome Project Data Processing (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Lorenzen, E. D. , Nogués‐Bravo, D. , Orlando, L. , Weinstock, J. , Binladen, J. , Marske, K. A. , Ugan, A. , Borregaard, M. K. , Gilbert, M. T. P. , Nielsen, R. , Ho, S. Y. W. , Goebel, T. , Graf, K. E. , Byers, D. , Stenderup, J. T. , Rasmussen, M. , Campos, P. F. , Leonard, J. A. , Koepfli, K.‐P. , … Willerslev, E. (2011). Species‐specific responses of Late Quaternary megafauna to climate and humans. Nature, 479, 359–364. 10.1038/nature10574 PubMed DOI PMC
Luzi, E. , & López‐García, J. M. (2019). Patterns of variation in Microtus arvalis and Microtus agrestis populations from Middle to Late Pleistocene in southwestern Europe. Historical Biology, 31, 535–543. 10.1080/08912963.2017.1375490 DOI
Luzi, E. , Pazonyi, P. , & López‐García, J. M. (2019). The influence of climate on morphometric traits of fossil populations of Microtus arvalis and M. agrestis from the Carpathian Basin, northern Hungary. Lethaia, 52, 123–132. 10.1111/let.12294 DOI
Mahmoudi, A. , Darvish, J. , Aliabadian, M. , Khosravi, M. , Golenishchev, F. N. , & Kryštufek, B. (2014). Chromosomal diversity in the genus Microtus at its southern distributional margin in Iran. Folia Zoologica, 63, 290–295. 10.25225/fozo.v63.i4.a8.2014 DOI
Mahmoudi, A. , Darvish, J. , Aliabadian, M. , Moghaddam, Y. , Kryštufek, B. , Moghaddam, F. Y. , & Kryštufek, B. (2017). New insight into the cradle of the grey voles (subgenus Microtus) inferred from mitochondrial cytochrome b sequences. Mammalia, 81, 583–593. 10.1515/mammalia-2016-0001 DOI
Mahmoudi, A. , Kryštufek, B. , Darvish, J. , Aliabadian, M. , Tabatabaei Yazdi, F. , Yazdani Moghaddam, F. , & Janžekovič, F. (2017). Craniometrics are not outdated: Interspecific morphological divergence in cryptic arvicoline rodents from Iran. Zoologischer Anzeiger, 270, 9–18. 10.1016/j.jcz.2017.08.008 DOI
Markova, A. K. (2011). Small mammals from Palaeolithic sites of the Crimea. Quaternary International, 231, 22–27. 10.1016/j.quaint.2010.07.016 DOI
Markova, E. , Malygin, V. , Montuire, S. , Nadachowski, A. , Quéré, J.‐P. , & Ochman, K. (2010). Dental variation in sibling species Microtus arvalis and M. rossiaemeridionalis (Arvicolinae, Rodentia): Between‐species comparisons and geography of morphotype dental patterns. Journal of Mammalian Evolution, 17, 121–139. 10.1007/s10914-009-9128-8 DOI
Martínková, N. , Barnett, R. , Cucchi, T. , Struchen, R. , Pascal, M. , Fischer, M. C. , Higham, T. , Brace, S. , Ho, S. Y. W. , Quéré, J. P. , O’Higgins, P. , Excoffier, L. , Heckel, G. , Rus Hoelzel, A. , Dobney, K. M. , & Searle, J. B. (2013). Divergent evolutionary processes associated with colonisation of offshore islands. Molecular Ecology, 22, 5205–5220. 10.1111/mec.12462 PubMed DOI PMC
Mauch Lenardić, J. (2007). Comparative metric analysis of Late Pleistocene Microtus ex gr. arvalis/agrestis (Arvicolidae, Rodentia, Mammalia) teeth from some Croatian localities. Courier Forschungsinstitut Senckenberg, 259, 149–154.
Maul, L. C. , & Markova, A. K. (2007). Similarity and regional differences in Quaternary arvicolid evolution in Central and Eastern Europe. Quaternary International, 160, 81–99. 10.1016/j.quaint.2006.09.010 DOI
Meyer, M. , & Kircher, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols, 5, t5448. 10.1101/pdb.prot5448 PubMed DOI
Milne, I. , Stephen, G. , Bayer, M. , Cock, P. J. A. , Pritchard, L. , Cardle, L. , Shaw, P. D. , & Marshall, D. (2013). Using Tablet for visual exploration of second‐generation sequencing data. Briefings in Bioinformatics, 14, 193–202. 10.1093/bib/bbs012 PubMed DOI
Molak, M. , & Ho, S. Y. W. (2015). Prolonged decay of molecular rate estimates for metazoan mitochondrial DNA. PeerJ, 3, e821. 10.7717/peerj.821 PubMed DOI PMC
Nadachowski, A. (1984a). Taxonomic value of anteroconid measurements of M1 in common and field voles. Acta Theriologica, 29, 123–143. 10.4098/AT.arch.84-10 DOI
Nadachowski, A. (1984b). Morphometric variability of dentition of the Late Pleistocene voles (Arvicolidae, Rodentia) from Bacho Kiro Cave (Bulgaria). Acta Zoologica Cracoviensia, 27, 149–176.
Nguyen, L. T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2014). IQ‐TREE: A fast and effective stochastic algorithm for estimating Maximum‐Likelihood Phylogenies. Molecular Biology and Evolution, 32, 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Pardiñas, U. F. J. , Myers, P. , León‐Paniagua, L. , Ordóñez Garza, N. , Cook, J. , Kryštufek, B. , Haslauer, R. , Bradley, R. , Shenbrot, G. , & Patton, J. (2017). Family Cricetidae (true hamsters, voles, lemmings and new world rats and mice). In Wilson D. E., Lacher T. E., & Mittermeier R. A. (Eds.), Handbook of the mammals of the World. Vol. 7. Rodents II. (pp. 204–279). Lynx Edicions.
Petculescu, A. , & Ştiucă, E. (2008). Peculiarity of the mammal associations from the Upper Pleistocene (Dobrogea, Romania). Quaternary International, 179, 79–82. 10.1016/j.quaint.2007.08.030 DOI
Popov, V. V. (1994). Quaternary small mammals from deposits in Temnata – Prohodna Cave system. In Ginter B., Kozłowski J. K., & Laville H. (Eds.), Temnata Cave. Excavations in Karlukovo Karst Area, Bulgaria (pp. 11–53). Jagiellonian University Press.
Popov, V. V. (2000). The small mammals (Mammalia: Insectivora, Chiroptera, Lagomorpha, Rodentia) from Cave 16 and the paleoenvironmental changes during the Late Pleistocene. In Ginter B., Kozłowski J. K., Guadelli J‐L., & Laville H. (Eds.), Temnata cave. Excavations in Karlukovo Karst Area (pp. 159–240). Jagiellonian University.
Popov, V. V. (2018). Pliocene‐Quaternary small mammals (Eulipotyphla, Chiroptera, Lagomorpha, Rodentia) in Bulgaria biostratigraphy, paleoecology, and evolution. In Huard G. & Gareau J. (Eds.), The Pleistocene (pp. 109–235). Nova Science Publishers Inc.
Popov, V. V. , & Marinska, M. (2007). An almost one million year long (Early to Late Pleistocene) small mammal succession from the archaeological layers of Kozarnika Cave in Northern Bulgaria. Courier Forschungsinstitut Senckenberg, 259, 79–92.
Quinlan, A. R. , & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Reimer, P. J. , Austin, W. E. N. , Bard, E. , Bayliss, A. , Blackwell, P. G. , Bonk Ramsey, C. , Butzin, M. , Cheng, H. , Edwards, R. L. , Friedrich, M. , Grootes, P. M. , Guilderson, T. P. , Hajdas, I. , Heaton, T. J. , Hogg, A. G. , Hughen, K. A. , Kromer, B. , Manning, S. W. , Muscheler, R. , … Talamo, S. (2020). The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62, 725–757. 10.1017/RDC.2020.41 DOI
Ridush, B. , Stefaniak, K. , Socha, P. , Proskurnyak, Y. , Marciszak, A. , Vremir, M. , & Nadachowski, A. (2013). Emine‐Bair‐Khosar Cave in the Crimea, a huge bone accumulation of Late Pleistocene fauna. Quaternary International, 284, 151–160. 10.1016/j.quaint.2012.03.050 DOI
Ronquist, F. , Teslenko, M. , van der Mark, P. , Ayres, D. L. , Darling, A. , Höhna, S. , Larget, B. , Liu, L. , Suchard, M. A. , & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Schubert, M. , Lindgreen, S. , & Orlando, L. (2016). AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Research Notes, 9, 1–7. 10.1186/s13104-016-1900-2 PubMed DOI PMC
Shenbrot, G. I. , & Krasnov, B. R. (2005). An atlas of the geographic distribution of the Arvicoline rodents of the world (Rodentia, Muridae: Arvicolinae). Pensoft Publishers.
Sibiryakov, P. A. , Tovpinets, N. N. , Dupal, T. A. , Semerikov, V. L. , Yalkovskaya, L. E. , & Markova, E. A. (2018). Phylogeography of the common vole Microtus arvalis, the obscurus form (Rodentia, Arvicolinae): New data on the mitochondrial DNA variability. Russian Journal of Genetics, 54, 1185–1198. 10.1134/S1022795418100137 DOI
Sommer, R. S. (2020). Late Pleistocene and Holocene History of Mammals in Europe. In Hackländer K. & Zachos F. (Eds.), Mammals of Europe – Past, present, and future. Handbook of the Mammals of Europe (pp. 83–98). Springer. 10.1007/978-3-030-00281-7_3 DOI
Stuart, A. J. (2015). Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal, 50, 338–363. 10.1002/gj.2633 DOI
Suchard, M. A. , Lemey, P. , Baele, G. , Ayres, D. L. , Drummond, A. J. , & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, 1–5. 10.1093/ve/vey016 PubMed DOI PMC
Talamo, S. , Fewlass, H. , Maria, R. , & Jaouenv, K. (2021). “Here we go again”: The inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. STAR: Science & Technology of Archaeological Research, 7(1), 62–77. 10.1080/20548923.2021.1944479 PubMed DOI PMC
Thanou, E. , Paragamian, K. , & Lymberakis, P. (2020). Social but lonely: Species delimitation of social voles and the evolutionary history of the only Microtus species living in Africa. Journal of Zoological Systematics and Evolutionary Research, 58, 475–498. 10.1111/jzs.12325 DOI
Tougard, C. , Montuire, S. , Volobouev, V. , Markova, E. , Contet, J. , Aniskin, V. , & Quere, J. P. (2013). Exploring phylogeography and species limits in the Altai vole (Rodentia: Cricetidae). Biological Journal of the Linnean Society, 108, 434–452. 10.1111/j.1095-8312.2012.02034.x DOI
Triant, D. A. , & DeWoody, J. A. (2008). Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents. Genetica, 132, 21–33. 10.1007/s10709-007-9145-6 PubMed DOI
van der Meulen, A. J. (1973). Middle Pleistocene smaller mammals from the Monte Peglia (Orveto, Italy) with special reference to the phylogeny of Microtus (Arvicolidae, Rodentia). Quaternaria, 17, 1–144.
van Klinken, G. J. (1999). Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science, 26(6), 687–695. 10.1006/jasc.1998.0385 DOI
van Kolfschoten, T. (1990). The evolution of the mammal fauna in the Netherlands and the Middle Rhine area (Western Germany) during the late Middle Pleistocene. Mededelingen Rijks Geologische Dienst, 43–3, 1–69.
Wacker, L. , Bonani, G. , Friedrich, M. , Hajdas, I. , Kromer, B. , Němec, M. , Ruff, M. , Suter, M. , Synal, H. A. , & Vockenhuber, C. (2010). Micadas: Routine and high‐precision radiocarbon dating. Radiocarbon, 52, 252–262. 10.1017/S0033822200045288 DOI
Wacker, L. , Fahrni, S. M. , Hajdas, I. , Molnar, M. , Synal, H. A. , Szidat, S. , & Zhang, Y. L. (2013). A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 294, 315–319. 10.1016/j.nimb.2012.02.009 DOI
Wacker, L. , Němec, M. , & Bourquin, J. (2010). A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268, 931–934. 10.1016/j.nimb.2009.10.067 DOI