Chitinase Chit62J4 Essential for Chitin Processing by Human Microbiome Bacterium Clostridium paraputrificum J4
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015043, LM2018127
Ministry of Education, Youth and Sports of the Czech Republic
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
CZ.02.1.01/0.0/0.0/15_003/0000447
European Regional Development Fund
86652036
Czech Academy of Sciences
PubMed
34641521
PubMed Central
PMC8512545
DOI
10.3390/molecules26195978
PII: molecules26195978
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation to the environment, chitinase, exochitinase, glycosyl hydrolase family 18, human commensal bacterium,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chitin metabolismus MeSH
- chitinasy chemie genetika metabolismus MeSH
- Clostridium růst a vývoj izolace a purifikace metabolismus MeSH
- katalytická doména MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- střevní mikroflóra MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chitin MeSH
- chitinasy MeSH
- rekombinantní proteiny MeSH
Commensal bacterium Clostridium paraputrificum J4 produces several extracellular chitinolytic enzymes including a 62 kDa chitinase Chit62J4 active toward 4-nitrophenyl N,N'-diacetyl-β-d-chitobioside (pNGG). We characterized the crude enzyme from bacterial culture fluid, recombinant enzyme rChit62J4, and its catalytic domain rChit62J4cat. This major chitinase, securing nutrition of the bacterium in the human intestinal tract when supplied with chitin, has a pH optimum of 5.5 and processes pNGG with Km = 0.24 mM and kcat = 30.0 s-1. Sequence comparison of the amino acid sequence of Chit62J4, determined during bacterial genome sequencing, characterizes the enzyme as a family 18 glycosyl hydrolase with a four-domain structure. The catalytic domain has the typical TIM barrel structure and the accessory domains-2x Fn3/Big3 and a carbohydrate binding module-that likely supports enzyme activity on chitin fibers. The catalytic domain is highly homologous to a single-domain chitinase of Bacillus cereus NCTU2. However, the catalytic profiles significantly differ between the two enzymes despite almost identical catalytic sites. The shift of pI and pH optimum of the commensal enzyme toward acidic values compared to the soil bacterium is the likely environmental adaptation that provides C. paraputrificum J4 a competitive advantage over other commensal bacteria.
Zobrazit více v PubMed
Flint H.J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 2004;56:89–120. PubMed
Flint H.J., Bayer E.A., Rincon M.T., Lamed R., White B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008;6:121–131. doi: 10.1038/nrmicro1817. PubMed DOI
Lopez-Santamarina A., Mondragon A.D.C., Lamas A., Miranda J.M., Franco C.M., Cepeda A. Animal-origin prebiotics based on chitin: An alternative for the future? A critical review. Foods. 2020;9:782. doi: 10.3390/foods9060782. PubMed DOI PMC
Simunek J., Kopecny J., Hodrova B., Bartonova H. Identification and characterization of Clostridium paraputrificum, a chitinolytic bacterium of human digestive tract. Folia Microbiol. Praha. 2002;47:559–564. doi: 10.1007/BF02818798. PubMed DOI
Lozupone C.A., Hamady M., Cantarel B.L., Coutinho P.M., Henrissat B., Gordon J.I., Knight R. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl. Acad. Sci. USA. 2008;105:15076–15081. doi: 10.1073/pnas.0807339105. PubMed DOI PMC
Duncan S.H., Louis P., Thomson J.M., Flint H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2009;11:2112–2122. doi: 10.1111/j.1462-2920.2009.01931.x. PubMed DOI
Tan K., Tesar C., Wilton R., Keigher L., Babnigg G., Joachimiak A. Novel alpha-glucosidase from human gut microbiome: Substrate specificities and their switch. FASEB J. 2010;24:3939–3949. doi: 10.1096/fj.10-156257. PubMed DOI PMC
Bhattacharya D., Nagpure A., Gupta R.K. Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol. 2007;27:21–28. doi: 10.1080/07388550601168223. PubMed DOI
Hartl L., Zach S., Seidl-Seiboth V. Fungal chitinases: Diversity, mechanistic properties and biotechnological potential. Appl. Microbiol. Biotechnol. 2012;93:533–543. doi: 10.1007/s00253-011-3723-3. PubMed DOI PMC
Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. The carbohydrate-active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D238. doi: 10.1093/nar/gkn663. PubMed DOI PMC
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Arimori T., Kawamoto N., Shinya S., Okazaki N., Nakazawa M., Miyatake K., Fukamizo T., Ueda M., Tamada T. Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis. J. Biol. Chem. 2013;288:18696–18706. doi: 10.1074/jbc.M113.462135. PubMed DOI PMC
Chen W., Jiang X., Yang Q. Glycoside hydrolase family 18 chitinases: The known and the unknown. Biotechnol. Adv. 2020;43:107553. doi: 10.1016/j.biotechadv.2020.107553. PubMed DOI
Eijsink V., Hoell I., Vaaje-Kolstada G. Structure and function of enzymes acting on chitin and chitosan. Biotechnol. Genet. Eng. Rev. 2010;27:331–366. doi: 10.1080/02648725.2010.10648156. PubMed DOI
Zhu Z., Zheng T., Homer R.J., Kim Y.K., Chen N.Y., Cohn L., Hamid Q., Elias J.A. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–1682. doi: 10.1126/science.1095336. PubMed DOI
Duskova J., Tishchenko G., Ponomareva E., Simunek J., Koppova I., Skalova T., Stepankova A., Hasek J., Dohnalek J. Chitinolytic enzymes from bacterium inhabiting human gastrointestinal tract—Critical parameters of protein isolation from anaerobic culture. Acta Biochim. Pol. 2011;58:261–263. doi: 10.18388/abp.2011_2275. PubMed DOI
Sinha V.R., Kumria R. Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 2003;18:3–18. doi: 10.1016/S0928-0987(02)00221-X. PubMed DOI
Simunek J., Tishchenko G., Hodrova B., Bartonova H. Effect of chitosan on the growth of human colonic bacteria. Folia Microbiol. Praha. 2006;51:306–308. doi: 10.1007/BF02931820. PubMed DOI
Shahidi F., Arachchi J.K.V., Jeon Y.J. Food applications of chitin and chitosans. Trends Food Sci. Tech. 1999;10:37–51. doi: 10.1016/S0924-2244(99)00017-5. DOI
Brown G.D., Denning D.W., Gow N.A., Levitz S.M., Netea M.G., White T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. PubMed DOI
Prashanth K.V.H., Tharanathan R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Tech. 2007;18:117–131. doi: 10.1016/j.tifs.2006.10.022. DOI
Villapol S. Gastrointestinal symptoms associated with COVID-19: Impact on the gut microbiome. Transl. Res. 2020;226:57–69. doi: 10.1016/j.trsl.2020.08.004. PubMed DOI PMC
Simunek J., Koppova I., Tiscenko G., Dohnalek J., Duskova J. Excretome of the chitinolytic bacterium Clostridium paraputrificum J4. Folia Microbiol. Praha. 2012;57:335–339. doi: 10.1007/s12223-012-0137-2. PubMed DOI
Kopecny J., Hodrova B., Stewart C.S. The isolation and characterization of a rumen chitinolytic bacterium. Lett. Appl. Microbiol. 1996;23:195–198. doi: 10.1111/j.1472-765X.1996.tb00063.x. PubMed DOI
Tishchenko G., Simunek J., Bartonova H., Duskova J., Dohnalek J., Ponomareva E., Tennikova T. Sample preparation in separation of the extracellular chitinolytic enzymes of the human intestinal bacterium Clostridium paraputrificum J4 from the culture fluids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2011;879:2175–2178. doi: 10.1016/j.jchromb.2011.05.043. PubMed DOI
Inglis P.W., Peberdy J.F. Production and purification of a chitinase from Ewingella americana, a recently described pathogen of the mushroom, Agaricus bisporus. FEMS Microbiol. Lett. 1997;157:189–194. doi: 10.1111/j.1574-6968.1997.tb12772.x. DOI
Pelletier A., Sygusch J. Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 1990;56:844–848. doi: 10.1128/aem.56.4.844-848.1990. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST plus: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., et al. Clustal W and clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Benkert P., Biasini M., Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343–350. doi: 10.1093/bioinformatics/btq662. PubMed DOI PMC
Almagro Armenteros J.J., Tsirigos K.D., Sonderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., Nielsen H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Shen H.B., Chou K.C. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem. Bioph. Res. Co. 2007;363:297–303. doi: 10.1016/j.bbrc.2007.08.140. PubMed DOI
Morimoto K., Yoshimoto M., Karita S., Kimura T., Ohmiya K., Sakka K. Characterization of the third chitinase Chi18C of Clostridium paraputrificum M-21. Appl. Microbiol. Biot. 2007;73:1106–1113. doi: 10.1007/s00253-006-0582-4. PubMed DOI
Hsieh Y.C., Wu Y.J., Chiang T.Y., Kuo C.Y., Shrestha K.L., Chao C.F., Huang Y.C., Chuankhayan P., Wu W.G., Li Y.K., et al. Crystal structures of Bacillus cereus NCTU2 chitinase complexes with chitooligomers reveal novel substrate binding for catalysis A chitinase without chitin binding and insertion domains. J. Biol. Chem. 2010;285:31603–31615. doi: 10.1074/jbc.M110.149310. PubMed DOI PMC
Punta M., Coggill P.C., Eberhardt R.Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G., Clements J., et al. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–D301. doi: 10.1093/nar/gkr1065. PubMed DOI PMC
Ikegami T., Okada T., Hashimoto M., Seino S., Watanabe T., Shirakawa M. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase A1. J. Biol. Chem. 2000;275:13654–13661. doi: 10.1074/jbc.275.18.13654. PubMed DOI
Hashimoto M., Ikegami T., Seino S., Ohuchi N., Fukada H., Sugiyama J., Shirakawa M., Watanabe T. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 2000;182:3045–3054. doi: 10.1128/JB.182.11.3045-3054.2000. PubMed DOI PMC
Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Characterization of Clostridium paraputrificum chitinase A from a recombinant Escherichia coli. J. Biosci. Bioeng. 2001;92:466–468. doi: 10.1016/S1389-1723(01)80297-8. PubMed DOI
Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin binding domain. J. Bacteriol. 1997;179:7306–7314. doi: 10.1128/jb.179.23.7306-7314.1997. PubMed DOI PMC
Li H., Morimoto K., Katagiri N., Kimura T., Sakka K., Lun S., Ohmiya K. A novel beta-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biot. 2002;60:420–427. PubMed
Wen C.M., Tseng C.S., Cheng C.Y., Li Y.K. Purification, characterization and cloning of a chitinase from Bacillus sp NCTU2. Biotechnol. Appl. Biochem. 2002;35:213–219. doi: 10.1042/BA20020001. PubMed DOI
Van Aalten D.M., Komander D., Synstad B., Gaseidnes S., Peter M.G., Eijsink V.G. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA. 2001;98:8979–8984. doi: 10.1073/pnas.151103798. PubMed DOI PMC
Papanikolau Y., Prag G., Tavlas G., Vorgias C.E., Oppenheim A.B., Petratos K. High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry. 2001;40:11338–11343. doi: 10.1021/bi010505h. PubMed DOI
Dahiya N., Tewari R., Hoondal G.S. Biotechnological aspects of chitinolytic enzymes: A review. Appl. Microbiol. Biotechnol. 2006;71:773–782. doi: 10.1007/s00253-005-0183-7. PubMed DOI
Cummings J.H., Macfarlane G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991;70:443–459. doi: 10.1111/j.1365-2672.1991.tb02739.x. PubMed DOI
Koval T., Dohnalek J. Characteristics and application of S1–P1 nucleases in biotechnology and medicine. Biotechnol. Adv. 2018;36:603–612. doi: 10.1016/j.biotechadv.2017.12.007. PubMed DOI
Muegge B.D., Kuczynski J., Knights D., Clemente J.C., Gonzalez A., Fontana L., Henrissat B., Knight R., Gordon J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–974. doi: 10.1126/science.1198719. PubMed DOI PMC
Frankowski J., Lorito M., Scala F., Schmid R., Berg G., Bahl H. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 2001;176:421–426. doi: 10.1007/s002030100347. PubMed DOI
Yuli P.E., Suhartono M.T., Rukayadi Y., Hwang J.K., Pyun Y.R. Characteristics of thermostable chitinase enzymes from the indonesian Bacillus sp 13.26. Enzyme Microb. Technol. 2004;35:147–153. doi: 10.1016/j.enzmictec.2004.03.017. DOI
Tsuji H., Nishimura S., Inui T., Kado Y., Ishikawa K., Nakamura T., Uegaki K. Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus—The role of conserved residues in the active site. FEBS J. 2010;277:2683–2695. doi: 10.1111/j.1742-4658.2010.07685.x. PubMed DOI
Laribi-Habchi H., Dziril M., Badis A., Mouhoub S., Mameri N. Purification and characterization of a highly thermostable chitinase from the stomach of the red scorpionfish Scorpaena scrofa with bioinsecticidal activity toward cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae) Biosci. Biotech. Biochem. 2012;76:1733–1740. doi: 10.1271/bbb.120344. PubMed DOI
Park J.K., Morita K., Fukumoto I., Yamasaki Y., Nakagawa T., Kawamukai M., Matsuda H. Purification and characterization of the chitinase (ChiA) from Enterobacter sp. G-1. Biosci. Biotech. Biochem. 1997;61:684–689. doi: 10.1271/bbb.61.684. DOI
Vaidya R., Roy S., Macmil S., Gandhi S., Vyas P., Chhatpar H.S. Purification and characterization of chitinase from Alcaligenes xylosoxydans. Biotechnol. Lett. 2003;25:715–717. doi: 10.1023/A:1023406630791. PubMed DOI
Bhushan B., Hoondal G.S. Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol. Lett. 1998;20:157–159. doi: 10.1023/A:1005328508227. DOI
Simunek J., Tishchenko G., Koppova I. Chitinolytic activities of Clostridium sp JM2 isolated from stool of human administered per orally by chitosan. Folia Microbiol. 2008;53:249–254. doi: 10.1007/s12223-008-0037-7. PubMed DOI
Davies D.A.L., Pope A.M.S. Mycolase, a new kind of systemic anti-mycotic. Nature. 1978;273:235–236. doi: 10.1038/273235a0. PubMed DOI
Cabral V., Znaidi S., Walker L.A., Martin-Yken H., Dague E., Legrand M., Lee K., Chauvel M., Firon A., Rossignol T., et al. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog. 2014;10:e1004542. doi: 10.1371/journal.ppat.1004542. PubMed DOI PMC
Jimenezbarbero J., Prieto A., Gomezmiranda B., Leal J.A., Bernabe M. Chemical-structure of fungal cell-wall polysaccharides isolated from Microsporum gypseum and related species of Microsporum and Trychophyton. Carbohydr. Res. 1995;272:121–128. doi: 10.1016/0008-6215(95)00023-M. DOI
Takeda T., Kawarasaki I., Ogihara Y. Studies on the structure of a polysaccharide from Epidermophyton floccosum and approach to a synthesis of the basic trisaccharide repeating units. Carbohydr. Res. 1981;89:301–308. doi: 10.1016/S0008-6215(00)85255-6. DOI