Drebrin Upregulation Regulates Astrocyte Polarization and Supports Tissue Recovery After Spinal Cord Injury in Mice

. 2025 Sep ; 73 (9) : 1910-1924. [epub] 20250611

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40497424

Grantová podpora
ExRegMed CZ.02.01.01/00/22_008/0004562 Ministerstvo Školství, Mládeže a Tělovýchovy
495290401 Deutsche Forschungsgemeinschaft
Deutscher Akademischer Austauschdienst
GAUK102122 Univerzita Karlova v Praze

Spinal cord injury (SCI) results in significant disruption of nerve fibers responsible for transmitting signals between the brain and body, often leading to partial or complete motor, sensory, and autonomic dysfunction below the injury site. Astrocytes are an important component in scar formation, crucial for suppression of injury propagation, effective wound healing, and the regulation of neuronal plasticity. Here, we identify the role of the actin-binding protein Drebrin (DBN) in reactive astrogliosis following SCI. SCI induces the upregulation of DBN in astrocytes, which controls immediate injury containment but also the long-term preservation of tissue integrity and healing in the spinal cord. DBN knockout results in enlarged spinal cord lesions, increased immune cell infiltration, and neurodegeneration. Mechanistically, DBN loss disrupts the polarization of scar border-forming astrocytes, leading to impaired encapsulation of the injury. In summary, DBN serves as a pivotal regulator of SCI outcome by modulating astrocytic polarity, which is essential for establishing a protective barrier confining the lesion site.

Zobrazit více v PubMed

Ahuja, C. S. , Wilson J. R., Nori S., et al. 2017. “Traumatic Spinal Cord Injury.” Nature Reviews Disease Primers 3, no. 1: 17018. 10.1038/nrdp.2017.18. PubMed DOI

Anderson, M. A. , Burda J. E., Ren Y., et al. 2016. “Astrocyte Scar Formation Aids Central Nervous System Axon Regeneration.” Nature 532, no. 7598: 195–200. 10.1038/nature17623. PubMed DOI PMC

Aoki, C. , Sekino Y., Hanamura K., et al. 2005. “Drebrin A Is a Postsynaptic Protein That Localizes In Vivo to the Submembranous Surface of Dendritic Sites Forming Excitatory Synapses.” Journal of Comparative Neurology 483, no. 4: 383–402. 10.1002/cne.20449. PubMed DOI

Attwell, C. L. , Van Zwieten M., Verhaagen J., and Mason M. R. J.. 2018. “The Dorsal Column Lesion Model of Spinal Cord Injury and Its Use in Deciphering the Neuron‐Intrinsic Injury Response.” Developmental Neurobiology 78, no. 10: 926–951. 10.1002/dneu.22601. PubMed DOI PMC

Basso, D. M. , Fisher L. C., Anderson A. J., Jakeman L. B., Mctigue D. M., and Popovich P. G.. 2006. “Basso Mouse Scale for Locomotion Detects Differences in Recovery After Spinal Cord Injury in Five Common Mouse Strains.” Journal of Neurotrauma 23, no. 5: 635–659. 10.1089/neu.2006.23.635. PubMed DOI

Beck, K. D. , Nguyen H. X., Galvan M. D., Salazar D. L., Woodruff T. M., and Anderson A. J.. 2010. “Quantitative Analysis of Cellular Inflammation After Traumatic Spinal Cord Injury: Evidence for a Multiphasic Inflammatory Response in the Acute to Chronic Environment.” Brain 133, no. 2: 433–447. 10.1093/brain/awp322. PubMed DOI PMC

Bellver‐Landete, V. , Bretheau F., Mailhot B., et al. 2019. “Microglia Are an Essential Component of the Neuroprotective Scar That Forms After Spinal Cord Injury.” Nature Communications 10, no. 1: 518. 10.1038/s41467-019-08446-0. PubMed DOI PMC

Bradbury, E. J. , and Burnside E. R.. 2019. “Moving Beyond the Glial Scar for Spinal Cord Repair.” Nature Communications 10, no. 3879: 3879. 10.1038/s41467-019-11707-7. PubMed DOI PMC

Burda, J. E. , Bernstein A. M., and Sofroniew M. V.. 2016. “Astrocyte Roles in Traumatic Brain Injury.” Experimental Neurology 275: 305–315. PubMed PMC

Chung, J. , Franklin J. F., and Lee H. J.. 2019. “Central Expression of Synaptophysin and Synaptoporin in Nociceptive Afferent Subtypes in the Dorsal Horn.” Scientific Reports 9, no. 1: 4273. 10.1038/s41598-019-40967-y. PubMed DOI PMC

Crowley, S. T. , Fukushima Y., Uchida S., Kataoka K., and Itaka K.. 2019. “Enhancement of Motor Function Recovery After Spinal Cord Injury in Mice by Delivery of Brain‐Derived Neurotrophic Factor mRNA.” Molecular Therapy ‐ Nucleic Acids 17: 465–476. 10.1016/j.omtn.2019.06.016. PubMed DOI PMC

David, S. , and Kroner A.. 2011. “Repertoire of Microglial and Macrophage Responses After Spinal Cord Injury.” Nature Reviews Neuroscience 12, no. 7: 388–399. 10.1038/nrn3053. PubMed DOI

Deacon, R. M. J. 2013. “Measuring Motor Coordination in Mice.” Journal of Visualized Experiments 75: 2609. 10.3791/2609. PubMed DOI PMC

Hellenbrand, D. J. , Quinn C. M., Piper Z. J., Morehouse C. N., Fixel J. A., and Hanna A. S.. 2021. “Inflammation After Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration.” Journal of Neuroinflammation 18, no. 1: 284. 10.1186/s12974-021-02337-2. PubMed DOI PMC

Heneka, M. T. , and Feinstein D. L.. 2001. “Expression and Function of Inducible Nitric Oxide Synthase in Neurons.” Journal of Neuroimmunology 114, no. 1–2: 8–18. 10.1016/S0165-5728(01)00246-6. PubMed DOI

Hill, R. L. , Zhang Y. P., Burke D. A., et al. 2009. “Anatomical and Functional Outcomes Following a Precise, Graded, Dorsal Laceration Spinal Cord Injury in C57BL/6 Mice.” Journal of Neurotrauma 26, no. 1: 1–15. 10.1089/neu.2008.0543. PubMed DOI PMC

Janz, R. , Südhof T. C., Hammer R. E., Unni V., Siegelbaum S. A., and Bolshakov V. Y.. 1999. “Essential Roles in Synaptic Plasticity for Synaptogyrin I and Synaptophysin I.” Neuron 24, no. 3: 687–700. 10.1016/S0896-6273(00)81122-8. PubMed DOI

Kajita, Y. , Kojima N., and Shirao T.. 2024. “A Lack of Drebrin Causes Olfactory Impairment.” Brain and Behavior: A Cognitive Neuroscience Perspective 14, no. 1: e3354. 10.1002/brb3.3354. PubMed DOI PMC

Kreis, P. , Gallrein C., Rojas‐Puente E., et al. 2019. “ATM Phosphorylation of the Actin‐Binding Protein Drebrin Controls Oxidation Stress‐Resistance in Mammalian Neurons and PubMed DOI PMC

Mantovani, A. , Sica A., Sozzani S., Allavena P., Vecchi A., and Locati M.. 2004. “The Chemokine System in Diverse Forms of Macrophage Activation and Polarization.” Trends in Immunology 25, no. 12: 677–686. 10.1016/j.it.2004.09.015. PubMed DOI

Masliah, E. , Fagan A. M., Terry R. D., DeTeresa R., Mallory M., and Gage F. H.. 1991. “Reactive Synaptogenesis Assessed by Synaptophysin Lmmunoreactivity Is Associated With GAP‐43 in the Dentate Gyrus of the Adult Rat.” Experimental Neurology 113, no. 2: 131–142. 10.1016/0014-4886(91)90169-D. PubMed DOI

Metz, G. A. , and Whishaw I. Q.. 2002. “Cortical and Subcortical Lesions Impair Skilled Walking in the Ladder Rung Walking Test: A New Task to Evaluate Fore‐ and Hindlimb Stepping, Placing, and Co‐Ordination.” Journal of Neuroscience Methods 115, no. 2: 169–179. 10.1016/S0165-0270(02)00012-2. PubMed DOI

Metz, G. A. , and Whishaw I. Q.. 2009. “The Ladder Rung Walking Task: A Scoring System and Its Practical Application.” Journal of Visualized Experiments 28: 1204. 10.3791/1204. PubMed DOI PMC

Ohsawa, K. , Imai Y., Sasaki Y., and Kohsaka S.. 2004. “Microglia/Macrophage‐Specific Protein Iba1 Binds to Fimbrin and Enhances Its Actin‐Bundling Activity.” Journal of Neurochemistry 88, no. 4: 844–856. 10.1046/j.1471-4159.2003.02213.x. PubMed DOI

Okada, S. , Nakamura M., Katoh H., et al. 2006. “Conditional Ablation of Stat3 or Socs3 Discloses a Dual Role for Reactive Astrocytes After Spinal Cord Injury.” Nature Medicine 12, no. 7: 829–834. 10.1038/nm1425. PubMed DOI

O'Shea, T. M. , Burda J. E., and Sofroniew M. V.. 2017. “Cell Biology of Spinal Cord Injury and Repair.” Journal of Clinical Investigation 127, no. 9: 3259–3270. 10.1172/JCI90608. PubMed DOI PMC

Paolicelli, R. C. , Sierra A., Stevens B., et al. 2022. “Microglia States and Nomenclature: A Field at Its Crossroads.” Neuron 110, no. 21: 3458–3483. 10.1016/j.neuron.2022.10.020. PubMed DOI PMC

Riek‐Burchardt, M. , Henrich‐Noack P., Metz G. A., and Reymann K. G.. 2004. “Detection of Chronic Sensorimotor Impairments in the Ladder Rung Walking Task in Rats With Endothelin‐1‐Induced Mild Focal Ischemia.” Journal of Neuroscience Methods 137, no. 2: 227–233. 10.1016/j.jneumeth.2004.02.012. PubMed DOI

Schindelin, J. , Arganda‐Carreras I., Frise E., et al. 2012. “Fiji: An Open‐Source Platform for Biological‐Image Analysis.” Nature Methods 9, no. 7: 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Schiweck, J. , Murk K., and Eickholt B. J.. 2018. “Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease.” Frontiers in Cellular Neuroscience 12: 261. 10.3389/fncel.2018.00261. PubMed DOI PMC

Schiweck, J. , Murk K., Ledderose J., et al. 2021. “Drebrin Controls Scar Formation and Astrocyte Reactivity Upon Traumatic Brain Injury by Regulating Membrane Trafficking.” Nature Communications 12, no. 1: 1490. 10.1038/s41467-021-21662-x. PubMed DOI PMC

Wang, X. , Cao K., Sun X., et al. 2015. “Macrophages in Spinal Cord Injury: Phenotypic and Functional Change From Exposure to Myelin Debris.” Glia 63, no. 4: 635–651. 10.1002/glia.22774. PubMed DOI PMC

Wang, X.‐X. , Li Z.‐H., Du H.‐Y., et al. 2024. “The Role of Foam Cells in Spinal Cord Injury: Challenges and Opportunities for Intervention.” Frontiers in Immunology 15: 1368203. 10.3389/fimmu.2024.1368203. PubMed DOI PMC

Wanner, I. B. , Anderson M. A., Song B., et al. 2013. “Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3‐Dependent Mechanisms After Spinal Cord Injury.” Journal of Neuroscience 33, no. 31: 12870–12886. 10.1523/JNEUROSCI.2121-13.2013. PubMed DOI PMC

Willmes, C. G. , Mack T. G. A., Ledderose J., Schmitz D., Wozny C., and Eickholt B. J.. 2017. “Investigation of Hippocampal Synaptic Transmission and Plasticity in Mice Deficient in the Actin‐Binding Protein Drebrin.” Scientific Reports 7, no. 1: 42652. 10.1038/srep42652. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...