Drebrin Upregulation Regulates Astrocyte Polarization and Supports Tissue Recovery After Spinal Cord Injury in Mice
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
ExRegMed CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
495290401
Deutsche Forschungsgemeinschaft
Deutscher Akademischer Austauschdienst
GAUK102122
Univerzita Karlova v Praze
PubMed
40497424
PubMed Central
PMC12313004
DOI
10.1002/glia.70048
Knihovny.cz E-zdroje
- Klíčová slova
- immune cell infiltration, neurodegeneration, reactive astrogliosis, spinal cord injury,
- MeSH
- astrocyty * metabolismus patologie MeSH
- glióza patologie metabolismus MeSH
- mícha patologie metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- neuropeptidy * metabolismus genetika MeSH
- obnova funkce * fyziologie MeSH
- polarita buněk * fyziologie genetika MeSH
- poranění míchy * patologie metabolismus MeSH
- upregulace * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- drebrins MeSH Prohlížeč
- neuropeptidy * MeSH
Spinal cord injury (SCI) results in significant disruption of nerve fibers responsible for transmitting signals between the brain and body, often leading to partial or complete motor, sensory, and autonomic dysfunction below the injury site. Astrocytes are an important component in scar formation, crucial for suppression of injury propagation, effective wound healing, and the regulation of neuronal plasticity. Here, we identify the role of the actin-binding protein Drebrin (DBN) in reactive astrogliosis following SCI. SCI induces the upregulation of DBN in astrocytes, which controls immediate injury containment but also the long-term preservation of tissue integrity and healing in the spinal cord. DBN knockout results in enlarged spinal cord lesions, increased immune cell infiltration, and neurodegeneration. Mechanistically, DBN loss disrupts the polarization of scar border-forming astrocytes, leading to impaired encapsulation of the injury. In summary, DBN serves as a pivotal regulator of SCI outcome by modulating astrocytic polarity, which is essential for establishing a protective barrier confining the lesion site.
2nd Faculty of Medicine Charles University Prague Czech Republic
Charité Universitätsmedizin Berlin Charité Core Facility Experimental MRIs Berlin Germany
Charité Universitätsmedizin Berlin Institute of Molecular Biology and Biochemistry Berlin Germany
Faculty of Biological Sciences University of Leeds Leeds UK
Freie Universität Berlin Berlin Germany
German Center for Neurodegenerative Diseases Bonn Germany
Institute of Biochemistry Charité Universitätsmedizin Berlin Berlin Germany
Institute of Experimental Medicine Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Ahuja, C. S. , Wilson J. R., Nori S., et al. 2017. “Traumatic Spinal Cord Injury.” Nature Reviews Disease Primers 3, no. 1: 17018. 10.1038/nrdp.2017.18. PubMed DOI
Anderson, M. A. , Burda J. E., Ren Y., et al. 2016. “Astrocyte Scar Formation Aids Central Nervous System Axon Regeneration.” Nature 532, no. 7598: 195–200. 10.1038/nature17623. PubMed DOI PMC
Aoki, C. , Sekino Y., Hanamura K., et al. 2005. “Drebrin A Is a Postsynaptic Protein That Localizes In Vivo to the Submembranous Surface of Dendritic Sites Forming Excitatory Synapses.” Journal of Comparative Neurology 483, no. 4: 383–402. 10.1002/cne.20449. PubMed DOI
Attwell, C. L. , Van Zwieten M., Verhaagen J., and Mason M. R. J.. 2018. “The Dorsal Column Lesion Model of Spinal Cord Injury and Its Use in Deciphering the Neuron‐Intrinsic Injury Response.” Developmental Neurobiology 78, no. 10: 926–951. 10.1002/dneu.22601. PubMed DOI PMC
Basso, D. M. , Fisher L. C., Anderson A. J., Jakeman L. B., Mctigue D. M., and Popovich P. G.. 2006. “Basso Mouse Scale for Locomotion Detects Differences in Recovery After Spinal Cord Injury in Five Common Mouse Strains.” Journal of Neurotrauma 23, no. 5: 635–659. 10.1089/neu.2006.23.635. PubMed DOI
Beck, K. D. , Nguyen H. X., Galvan M. D., Salazar D. L., Woodruff T. M., and Anderson A. J.. 2010. “Quantitative Analysis of Cellular Inflammation After Traumatic Spinal Cord Injury: Evidence for a Multiphasic Inflammatory Response in the Acute to Chronic Environment.” Brain 133, no. 2: 433–447. 10.1093/brain/awp322. PubMed DOI PMC
Bellver‐Landete, V. , Bretheau F., Mailhot B., et al. 2019. “Microglia Are an Essential Component of the Neuroprotective Scar That Forms After Spinal Cord Injury.” Nature Communications 10, no. 1: 518. 10.1038/s41467-019-08446-0. PubMed DOI PMC
Bradbury, E. J. , and Burnside E. R.. 2019. “Moving Beyond the Glial Scar for Spinal Cord Repair.” Nature Communications 10, no. 3879: 3879. 10.1038/s41467-019-11707-7. PubMed DOI PMC
Burda, J. E. , Bernstein A. M., and Sofroniew M. V.. 2016. “Astrocyte Roles in Traumatic Brain Injury.” Experimental Neurology 275: 305–315. PubMed PMC
Chung, J. , Franklin J. F., and Lee H. J.. 2019. “Central Expression of Synaptophysin and Synaptoporin in Nociceptive Afferent Subtypes in the Dorsal Horn.” Scientific Reports 9, no. 1: 4273. 10.1038/s41598-019-40967-y. PubMed DOI PMC
Crowley, S. T. , Fukushima Y., Uchida S., Kataoka K., and Itaka K.. 2019. “Enhancement of Motor Function Recovery After Spinal Cord Injury in Mice by Delivery of Brain‐Derived Neurotrophic Factor mRNA.” Molecular Therapy ‐ Nucleic Acids 17: 465–476. 10.1016/j.omtn.2019.06.016. PubMed DOI PMC
David, S. , and Kroner A.. 2011. “Repertoire of Microglial and Macrophage Responses After Spinal Cord Injury.” Nature Reviews Neuroscience 12, no. 7: 388–399. 10.1038/nrn3053. PubMed DOI
Deacon, R. M. J. 2013. “Measuring Motor Coordination in Mice.” Journal of Visualized Experiments 75: 2609. 10.3791/2609. PubMed DOI PMC
Hellenbrand, D. J. , Quinn C. M., Piper Z. J., Morehouse C. N., Fixel J. A., and Hanna A. S.. 2021. “Inflammation After Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration.” Journal of Neuroinflammation 18, no. 1: 284. 10.1186/s12974-021-02337-2. PubMed DOI PMC
Heneka, M. T. , and Feinstein D. L.. 2001. “Expression and Function of Inducible Nitric Oxide Synthase in Neurons.” Journal of Neuroimmunology 114, no. 1–2: 8–18. 10.1016/S0165-5728(01)00246-6. PubMed DOI
Hill, R. L. , Zhang Y. P., Burke D. A., et al. 2009. “Anatomical and Functional Outcomes Following a Precise, Graded, Dorsal Laceration Spinal Cord Injury in C57BL/6 Mice.” Journal of Neurotrauma 26, no. 1: 1–15. 10.1089/neu.2008.0543. PubMed DOI PMC
Janz, R. , Südhof T. C., Hammer R. E., Unni V., Siegelbaum S. A., and Bolshakov V. Y.. 1999. “Essential Roles in Synaptic Plasticity for Synaptogyrin I and Synaptophysin I.” Neuron 24, no. 3: 687–700. 10.1016/S0896-6273(00)81122-8. PubMed DOI
Kajita, Y. , Kojima N., and Shirao T.. 2024. “A Lack of Drebrin Causes Olfactory Impairment.” Brain and Behavior: A Cognitive Neuroscience Perspective 14, no. 1: e3354. 10.1002/brb3.3354. PubMed DOI PMC
Kreis, P. , Gallrein C., Rojas‐Puente E., et al. 2019. “ATM Phosphorylation of the Actin‐Binding Protein Drebrin Controls Oxidation Stress‐Resistance in Mammalian Neurons and PubMed DOI PMC
Mantovani, A. , Sica A., Sozzani S., Allavena P., Vecchi A., and Locati M.. 2004. “The Chemokine System in Diverse Forms of Macrophage Activation and Polarization.” Trends in Immunology 25, no. 12: 677–686. 10.1016/j.it.2004.09.015. PubMed DOI
Masliah, E. , Fagan A. M., Terry R. D., DeTeresa R., Mallory M., and Gage F. H.. 1991. “Reactive Synaptogenesis Assessed by Synaptophysin Lmmunoreactivity Is Associated With GAP‐43 in the Dentate Gyrus of the Adult Rat.” Experimental Neurology 113, no. 2: 131–142. 10.1016/0014-4886(91)90169-D. PubMed DOI
Metz, G. A. , and Whishaw I. Q.. 2002. “Cortical and Subcortical Lesions Impair Skilled Walking in the Ladder Rung Walking Test: A New Task to Evaluate Fore‐ and Hindlimb Stepping, Placing, and Co‐Ordination.” Journal of Neuroscience Methods 115, no. 2: 169–179. 10.1016/S0165-0270(02)00012-2. PubMed DOI
Metz, G. A. , and Whishaw I. Q.. 2009. “The Ladder Rung Walking Task: A Scoring System and Its Practical Application.” Journal of Visualized Experiments 28: 1204. 10.3791/1204. PubMed DOI PMC
Ohsawa, K. , Imai Y., Sasaki Y., and Kohsaka S.. 2004. “Microglia/Macrophage‐Specific Protein Iba1 Binds to Fimbrin and Enhances Its Actin‐Bundling Activity.” Journal of Neurochemistry 88, no. 4: 844–856. 10.1046/j.1471-4159.2003.02213.x. PubMed DOI
Okada, S. , Nakamura M., Katoh H., et al. 2006. “Conditional Ablation of Stat3 or Socs3 Discloses a Dual Role for Reactive Astrocytes After Spinal Cord Injury.” Nature Medicine 12, no. 7: 829–834. 10.1038/nm1425. PubMed DOI
O'Shea, T. M. , Burda J. E., and Sofroniew M. V.. 2017. “Cell Biology of Spinal Cord Injury and Repair.” Journal of Clinical Investigation 127, no. 9: 3259–3270. 10.1172/JCI90608. PubMed DOI PMC
Paolicelli, R. C. , Sierra A., Stevens B., et al. 2022. “Microglia States and Nomenclature: A Field at Its Crossroads.” Neuron 110, no. 21: 3458–3483. 10.1016/j.neuron.2022.10.020. PubMed DOI PMC
Riek‐Burchardt, M. , Henrich‐Noack P., Metz G. A., and Reymann K. G.. 2004. “Detection of Chronic Sensorimotor Impairments in the Ladder Rung Walking Task in Rats With Endothelin‐1‐Induced Mild Focal Ischemia.” Journal of Neuroscience Methods 137, no. 2: 227–233. 10.1016/j.jneumeth.2004.02.012. PubMed DOI
Schindelin, J. , Arganda‐Carreras I., Frise E., et al. 2012. “Fiji: An Open‐Source Platform for Biological‐Image Analysis.” Nature Methods 9, no. 7: 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Schiweck, J. , Murk K., and Eickholt B. J.. 2018. “Important Shapeshifter: Mechanisms Allowing Astrocytes to Respond to the Changing Nervous System During Development, Injury and Disease.” Frontiers in Cellular Neuroscience 12: 261. 10.3389/fncel.2018.00261. PubMed DOI PMC
Schiweck, J. , Murk K., Ledderose J., et al. 2021. “Drebrin Controls Scar Formation and Astrocyte Reactivity Upon Traumatic Brain Injury by Regulating Membrane Trafficking.” Nature Communications 12, no. 1: 1490. 10.1038/s41467-021-21662-x. PubMed DOI PMC
Wang, X. , Cao K., Sun X., et al. 2015. “Macrophages in Spinal Cord Injury: Phenotypic and Functional Change From Exposure to Myelin Debris.” Glia 63, no. 4: 635–651. 10.1002/glia.22774. PubMed DOI PMC
Wang, X.‐X. , Li Z.‐H., Du H.‐Y., et al. 2024. “The Role of Foam Cells in Spinal Cord Injury: Challenges and Opportunities for Intervention.” Frontiers in Immunology 15: 1368203. 10.3389/fimmu.2024.1368203. PubMed DOI PMC
Wanner, I. B. , Anderson M. A., Song B., et al. 2013. “Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3‐Dependent Mechanisms After Spinal Cord Injury.” Journal of Neuroscience 33, no. 31: 12870–12886. 10.1523/JNEUROSCI.2121-13.2013. PubMed DOI PMC
Willmes, C. G. , Mack T. G. A., Ledderose J., Schmitz D., Wozny C., and Eickholt B. J.. 2017. “Investigation of Hippocampal Synaptic Transmission and Plasticity in Mice Deficient in the Actin‐Binding Protein Drebrin.” Scientific Reports 7, no. 1: 42652. 10.1038/srep42652. PubMed DOI PMC