Nanoparticles and Plant By-Products for Edible Coatings Production: A Case Study with Zinc, Titanium, and Silver
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2021ITA24
ITA VETUNI
PubMed
35890613
PubMed Central
PMC9320583
DOI
10.3390/polym14142837
PII: polym14142837
Knihovny.cz E-zdroje
- Klíčová slova
- CIELab, nanoparticles, packaging, plant extract, scanning electron microscopy, sensory properties,
- Publikační typ
- časopisecké články MeSH
For the development of functional edible packaging that will not lead to rejection by the consumer, it is needed to analyze the interactions between ingredients in the packaging matrix. The aim of this study was to develop edible chitosan-based coatings that have been enriched with red grape extracts, zinc, silver, and titanium nanoparticles. The organoleptic properties of the produced edible packaging were described by quantitative descriptive analysis and consumer acceptability was verified by hedonic analysis. By image analysis, color parameters in the CIELab system, opacity, Whiteness and Yellowness Index were described. The microstructure was described by scanning electron microscopy. The hedonic evaluation revealed that the addition of nanometals and their increasing concentration caused a deterioration in sample acceptability. The overall evaluation was higher than 5 in 50% of the samples containing nanometals. The addition of nanometals also caused statistically significant changes in L*, a*, and b* values. The sample transparency generally decreased with the increasing concentration of nanoparticle addition. Scanning electron microscopy showed, that the addition of nanometals does not disrupt the protective function of the packaging. From a sensory point of view, the addition of ZnO nanoparticles in concentrations of 0.05 and 0.2% appeared to be the most favorable of all nanometals.
Zobrazit více v PubMed
Zhang W., Zhang Y., Cao J., Jiang W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021;166:288–296. doi: 10.1016/j.ijbiomac.2020.10.185. PubMed DOI
Mohamed S.A.A., El-Sakhawy M., El-Sakhawy M.A.-M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020;238:116178. doi: 10.1016/j.carbpol.2020.116178. PubMed DOI
Darmajana D.A., Afifah N., Solihah E., Indriyanti N. Effects of Carrageenan Edible Coating on Fresh Cut Melon Quality in Cold Storage. Agritech. 2017;37:280–287. doi: 10.22146/agritech.10377. DOI
Maringgal B., Hashim N., Tawakkal I.S.M.A., Mohamed M.T.M. Recent Advance in Edible Coating and Its Effect on Fresh/Fresh-Cut Fruits Quality. Trends Food Sci. Technol. 2020;96:253–267. doi: 10.1016/j.tifs.2019.12.024. DOI
La D.D., Nguyen-Tri P., Le K.H., Nguyen P.T.M., Nguyen M.D.-B., Vo A.T.K., Nguyen M.T.H., Chang S.W., Tran L.D., Chung W.J., et al. Effects of Antibacterial ZnO Nanoparticles on the Performance of a Chitosan/Gum Arabic Edible Coating for Post-Harvest Banana Preservation. Prog. Org. Coat. 2021;151:106057. doi: 10.1016/j.porgcoat.2020.106057. DOI
Bumbudsanpharoke N., Ko S. Nano-Food Packaging: An Overview of Market, Migration Research, and Safety Regulations. J. Food Sci. 2015;80:R910–R923. doi: 10.1111/1750-3841.12861. PubMed DOI
Pushparaj K., Liu W.-C., Meyyazhagan A., Orlacchio A., Pappusamy M., Vadivalagan C., Robert A.A., Arumugam V.A., Kamyab H., Klemeš J.J., et al. Nano- from Nature to Nurture: A Comprehensive Review on Facets, Trends, Perspectives and Sustainability of Nanotechnology in the Food Sector. Energy. 2022;240:122732. doi: 10.1016/j.energy.2021.122732. DOI
Trajkovska Petkoska A., Daniloski D., D’Cunha N.M., Naumovski N., Broach A.T. Edible Packaging: Sustainable Solutions and Novel Trends in Food Packaging. Food Res. Int. 2021;140:109981. doi: 10.1016/j.foodres.2020.109981. PubMed DOI
Alfei S., Marengo B., Zuccari G. Nanotechnology Application in Food Packaging: A Plethora of Opportunities versus Pending Risks Assessment and Public Concerns. Food Res. Int. 2020;137:109664. doi: 10.1016/j.foodres.2020.109664. PubMed DOI
Kumar S., Basumatary I.B., Sudhani H.P.K., Bajpai V.K., Chen L., Shukla S., Mukherjee A. Plant Extract Mediated Silver Nanoparticles and Their Applications as Antimicrobials and in Sustainable Food Packaging: A State-of-the-Art Review. Trends Food Sci. Technol. 2021;112:651–666. doi: 10.1016/j.tifs.2021.04.031. DOI
Bahrami A., Mokarram R.R., Khiabani M.S., Ghanbarzadeh B., Salehi R. Physico-Mechanical and Antimicrobial Properties of Tragacanth/Hydroxypropyl Methylcellulose/Beeswax Edible Films Reinforced with Silver Nanoparticles. Int. J. Biol. Macromol. 2019;129:1103–1112. doi: 10.1016/j.ijbiomac.2018.09.045. PubMed DOI
Oyom W., Zhang Z., Bi Y., Tahergorabi R. Application of Starch-Based Coatings Incorporated with Antimicrobial Agents for Preservation of Fruits and Vegetables: A Review. Prog. Org. Coat. 2022;166:106800. doi: 10.1016/j.porgcoat.2022.106800. DOI
Rojas-Graü M.A., Soliva-Fortuny R., Martín-Belloso O. Edible Coatings to Incorporate Active Ingredients to Fresh-Cut Fruits: A Review. Trends Food Sci. Technol. 2009;20:438–447. doi: 10.1016/j.tifs.2009.05.002. DOI
Dordevic Jancikova S., Dordević D., Sedlacek P., Kalina M., Těšíková K., Antonic B., Tremlová B., Treml J., Nejezchlebova M., Vapenka L., et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers. 2021;13:3388. doi: 10.3390/polym13193388. PubMed DOI PMC
Tauferova A., Pospiech M., Javurkova Z., Tremlova B., Dordevic D., Jancikova S., Tesikova K., Zdarsky M., Vitez T., Vitezova M. Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace. Polymers. 2021;13:2578. doi: 10.3390/polym13152578. PubMed DOI PMC
Acevedo C.A., Lopez D.A., Tapia M.J., Enrione J., Skurtys O., Pedreschi F., Brown D.I., Creixell W., Osorio F. Using RGB Image Processing for Designing an Alginate Edible Film. Food Bioprocess Technol. 2012;5:1511–1520. doi: 10.1007/s11947-010-0453-y. DOI
Sharma G. Color Fundamentals for Digital Imaging. 1st ed. CRC Press; Boca Raton, FL, USA: 2003.
Luo M.R. The CIE 2000 Colour Difference Formula: CIEDE2000; Proceedings of the AIC: 9th Congress of the International Colour Association; Rochester, NY, USA. 24–29 June 2001; pp. 554–559.
Navarro R., Arancibia C., Lidia Herrera M., Matiacevich S. Effect of Type of Encapsulating Agent on Physical Properties of Edible Films Based on Alginate and Thyme Oil. Food Bioprod. Processing. 2016;97:63–75. doi: 10.1016/j.fbp.2015.11.001. DOI
Li J., Sun Q., Sun Y., Chen B., Wu X., Le T. Improvement of Banana Postharvest Quality Using a Novel Soybean Protein Isolate/Cinnamaldehyde/Zinc Oxide Bionanocomposite Coating Strategy. Sci. Hortic. 2019;258:108786. doi: 10.1016/j.scienta.2019.108786. DOI
Saberi B., Thakur R., Vuong Q.V., Chockchaisawasdee S., Golding J.B., Scarlett C.J., Stathopoulos C.E. Optimization of Physical and Optical Properties of Biodegradable Edible Films Based on Pea Starch and Guar Gum. Ind. Crops Prod. 2016;86:342–352. doi: 10.1016/j.indcrop.2016.04.015. DOI
Wu Y., Zhang W., Yu W., Zhao L., Song S., Xu W., Zhang C., Ma C., Wang L., Wang S. Study on the Volatile Composition of Table Grapes of Three Aroma Types. LWT. 2019;115:108450. doi: 10.1016/j.lwt.2019.108450. DOI
Zifkin M., Jin A., Ozga J.A., Zaharia L.I., Schernthaner J.P., Gesell A., Abrams S.R., Kennedy J.A., Constabel C.P. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism. Plant Physiol. 2012;158:200–224. doi: 10.1104/pp.111.180950. PubMed DOI PMC
Marvizadeh M.M., Oladzadabbasabadi N., Mohammadi Nafchi A., Jokar M. Preparation and Characterization of Bionanocomposite Film Based on Tapioca Starch/Bovine Gelatin/Nanorod Zinc Oxide. Int. J. Biol. Macromol. 2017;99:1–7. doi: 10.1016/j.ijbiomac.2017.02.067. PubMed DOI
Mantilla N., Castell-Perez M.E., Gomes C., Moreira R.G. Multilayered Antimicrobial Edible Coating and Its Effect on Quality and Shelf-Life of Fresh-Cut Pineapple (Ananas Comosus) LWT Food Sci. Technol. 2013;51:37–43. doi: 10.1016/j.lwt.2012.10.010. DOI
Zhao Y., McDaniel M. 24—Sensory Quality of Foods Associated with Edible Film and Coating Systems and Shelf-Life Extension. In: Han J.H., editor. Innovations in Food Packaging. Academic Press; London, UK: 2005. pp. 434–453. Food Science and Technology.
Marchiore N.G., Manso I.J., Kaufmann K.C., Lemes G.F., de Oliveira Pizolli A.P., Droval A.A., Bracht L., Gonçalves O.H., Leimann F.V. Migration Evaluation of Silver Nanoparticles from Antimicrobial Edible Coating to Sausages. LWT Food Sci. Technol. 2017;76:203–208. doi: 10.1016/j.lwt.2016.06.013. DOI
Rhim J.W., Wang L.F., Hong S.I. Preparation and Characterization of Agar/Silver Nanoparticles Composite Films with Antimicrobial Activity. Food Hydrocoll. 2013;33:327–335. doi: 10.1016/j.foodhyd.2013.04.002. DOI
Dash K.K., Ali N.A., Das D., Mohanta D. Thorough Evaluation of Sweet Potato Starch and Lemon-Waste Pectin Based-Edible Films with Nano-Titania Inclusions for Food Packaging Applications. Int. J. Biol. Macromol. 2019;139:449–458. doi: 10.1016/j.ijbiomac.2019.07.193. PubMed DOI
Hou X., Xue Z., Liu J., Yan M., Xia Y., Ma Z. Characterization and Property Investigation of Novel Eco-friendly Agar/Carrageenan/TiO2 Nanocomposite Films. J. Appl. Polym. Sci. 2019;136:47113. doi: 10.1002/app.47113. DOI
Wardana A.A., Suyatma N.E., Muchtadi T.R., Yaliani S. Influence of ZnO Nanoparticles and Stearic Acid on Physical, Mechanical and Structural Properties of Cassava Starch-Based Bionanocomposite Edible Films. Int. Food Res. J. 2018;25:1837–1844.
Bakhy E.A., Zidan N.S., Aboul-Anean H.E.D. The Effect of Nano Materials On Edible Coating and Films’ Improvement. Int. J. Pharm. Res. Allied Sci. 2018;7:20–41.
Kumar S., Shukla A., Baul P.P., Mitra A., Halder D. Biodegradable Hybrid Nanocomposites of Chitosan/Gelatin and Silver Nanoparticles for Active Food Packaging Applications. Food Packag. Shelf Life. 2018;16:178–184. doi: 10.1016/j.fpsl.2018.03.008. DOI
Feng Z., Li L., Wang Q., Wu G., Liu C., Jiang B., Xu J. Effect of Antioxidant and Antimicrobial Coating Based on Whey Protein Nanofibrils with TiO2 Nanotubes on the Quality and Shelf Life of Chilled Meat. Int. J. Mol. Sci. 2019;20:1184. doi: 10.3390/ijms20051184. PubMed DOI PMC
Li Y., Jiang Y., Liu F., Ren F., Zhao G., Leng X. Fabrication and Characterization of TiO2/Whey Protein Isolate Nanocomposite Film. Food Hydrocoll. 2011;25:1098–1104. doi: 10.1016/j.foodhyd.2010.10.006. DOI
Gohargani M., Lashkari H., Shirazinejad A. Study on Biodegradable Chitosan-Whey Protein-Based Film Containing Bionanocomposite TiO2and Zataria Multiflora Essential Oil. J. Food Qual. 2020;2020:8844167. doi: 10.1155/2020/8844167. DOI
Le K.H., Dac-Binh Nguyen M., Dai Tran L., Phuong H., Thi N., Van Tran C., Van Tran K., Phuong H., Thi N.D., Yoon Y.S., et al. A Novel Antimicrobial ZnO Nanoparticles-Added Polysaccharide Edible Coating for the Preservation of Postharvest Avocado under Ambient Conditions. Prog. Org. Coat. 2021;158:106339. doi: 10.1016/j.porgcoat.2021.106339. DOI