Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace

. 2021 Aug 03 ; 13 (15) : . [epub] 20210803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34372181

Grantová podpora
FVHE/Tremlová/ITA2020 University of Veterinary Sciences Brno

Studies dealing with the development of edible/biodegradable packaging have been gaining popularity since these commodities are marked as being ecofriendly, especially when byproducts are incorporated. Consequently, this study aimed at the development of chitosan-based coatings with plant byproducts. Their sensory properties, colour attributes, occurrence of cracks in microstructure and biodegradability were analysed. Coatings containing grape and blueberry pomace had statistically significantly (p < 0.05) higher levels of colour intensity. Coating samples were characterised by lower aroma intensity (3.46-4.77), relatively smooth surface (2.40-5.86), and low stickiness (2.11-3.14). In the overall hedonic evaluation, the samples containing parsley pomace in all concentrations and a sample containing 5% grape pomace achieved a statistically significantly (p < 0.05) better evaluation (5.76-5.93). The lowest values of the parameter ΔE2000 were recorded for the sample containing 5% parsley pomace (3.5); the highest was for the sample with 20% blueberry pomace (39.3). An analysis of the coating surface microstructure showed the presence of surface cracks at an 80 K magnification but the protective function of the edible coating was not disrupted by the added plant pomace. The produced samples can be considered to have a high biodegradability rate. The results of our experimentally produced coatings indicate their possible application on a commercial scale.

Zobrazit více v PubMed

Jafarzadeh S., Nafchi A.M., Salehabadi A., Oladzad-abbasabadi N., Jafari S.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv. Colloid Interface Sci. 2021;291:102405. doi: 10.1016/j.cis.2021.102405. PubMed DOI

Al-Tayyar N.A., Youssef A.M., Al-Hindi R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020;26:e00215. doi: 10.1016/j.susmat.2020.e00215. DOI

Jancikova S., Dordevic D., Jamroz E., Behalova H., Tremlova B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods. 2020;9:357. doi: 10.3390/foods9030357. PubMed DOI PMC

Du Y., Yang F., Yu H., Cheng Y., Guo Y., Yao W., Xie Y. Fabrication of novel self-healing edible coating for fruits preservation and its performance maintenance mechanism. Food Chem. 2021;351:129284. doi: 10.1016/j.foodchem.2021.129284. PubMed DOI

Ezazi A., Javadi A., Jafarizadeh-Malmiri H., Mirzaei H. Development of a chitosan-propolis extract edible coating formulation based on physico-chemical attributes of hens‘ eggs: Optimization and characteristics edible coating of egg using chitosan and propolis. Food Biosci. 2021;40:100894. doi: 10.1016/j.fbio.2021.100894. DOI

Tavares L., Souza H.K., Gonçalves M.P., Rocha C.M. Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll. 2021;113:106471. doi: 10.1016/j.foodhyd.2020.106471. DOI

Quintana S.E., Llalla O., García-Risco M.R., Fornari T. Comparison between essential oils and supercritical extracts into chitosan-based edible coatings on strawberry quality during cold storage. J. Supercrit. Fluids. 2021;171:105198. doi: 10.1016/j.supflu.2021.105198. DOI

Santagata G., Mallardo S., Fasulo G., Lavermicocca P., Valerio F., Di Biase M., Di Stasio M., Malinconico M., Volpe M.G. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chem. 2018;258:104–110. doi: 10.1016/j.foodchem.2018.03.064. PubMed DOI

Xiong Y., Kamboj M., Ajlouni S., Fang Z. Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control. 2021;125:107994. doi: 10.1016/j.foodcont.2021.107994. DOI

Hellebois T., Tsevdou M., Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. In: da Cruz A.G., Schwinden Prudencio E., Almeida Esmerino E., da Silva M.C., editors. Probiotic and Prebiotics in Foods: Challenges, Innovations and Advances. Volume 94. Academic Press; London, UK: 2020. pp. 161–221. PubMed

Kõrge K., Bajić M., Likozar B., Novak U. Active chitosan–chestnut extract films used for packaging and storage of fresh pasta. Int. J. Food Sci. Technol. 2020;55:3043–3052. doi: 10.1111/ijfs.14569. DOI

Jiang B., Wang L., Zhu M., Wu S., Wang X., Li D., Tian B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT. 2021;147:111617. doi: 10.1016/j.lwt.2021.111617. DOI

Jiang B., Wang X., Wang L., Wu S., Li D., Liu C., Feng Z. Fabrication and characterization of a microemulsion stabilized by integrated phosvitin and gallic acid. J. Agric. Food Chem. 2020;68:5437–5447. doi: 10.1021/acs.jafc.0c00945. PubMed DOI

Mileriene J., Serniene L., Henriques M., Gomes D., Pereira C., Kondrotiene K., Kasetiene N., Lauciene L., Sekmokiene D., Malakauskas M. Effect of liquid whey protein concentrate–based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J. Dairy Sci. 2021;104:1504–1517. doi: 10.3168/jds.2020-18732. PubMed DOI

Torres-León C., Vicente A.A., Flores-López M.L., Rojas R., Serna-Cock L., Alvarez-Pérez O.B., Aguilar C.N. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT. 2018;97:624–631. doi: 10.1016/j.lwt.2018.07.057. DOI

Suhag R., Kumar N., Petkoska A.T., Upadhyay A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020;136:109582. doi: 10.1016/j.foodres.2020.109582. PubMed DOI

Alfei S., Marengo B., Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res. Int. 2020;137:109664. doi: 10.1016/j.foodres.2020.109664. PubMed DOI

Wang Q., Liu W., Tian B., Li D., Liu C., Jiang B., Feng Z. Preparation and characterization of coating based on protein nanofibers and polyphenol and application for salted duck egg yolks. Foods. 2020;9:449. doi: 10.3390/foods9040449. PubMed DOI PMC

Cheba B.A. Chitosan: Properties, Modifications and Food Nanobiotechnology. Procedia Manuf. 2020;46:652–658. doi: 10.1016/j.promfg.2020.03.093. DOI

Fortunati E. Antimicrobial Food Packaging. Academic Press; London, UK: 2016. Chapter 38—Multifunctional Films, Blends, and Nanocomposites Based on Chitosan: Use in Antimicrobial Packaging; pp. 467–477. DOI

Jiang H., Sun Z., Jia R., Wang X., Huang J. Effect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. J. Food Qual. 2016;39:516–523. doi: 10.1111/jfq.12211. DOI

Nair M.S., Saxena A., Kaur C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.) Food Chem. 2018;240:245–252. doi: 10.1016/j.foodchem.2017.07.122. PubMed DOI

Silva G.M., Silva W.B., Medeiros D.B., Salvador A.R., Cordeiro M.H., da Silva N.M., Santana D.B., Mizobutsi G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017;237:372–378. doi: 10.1016/j.foodchem.2017.05.123. PubMed DOI

Awad M.A., Al-Qurashi A.D., Mohamed S.A., El-Shishtawy R.M. Quality and biochemical changes of ‘Hindi-Besennara’mangoes during shelf life as affected by chitosan, gallic acid and chitosan gallate. J. Food Sci. Technol. 2017;54:4139–4148. doi: 10.1007/s13197-017-2762-x. PubMed DOI PMC

Jongsri P., Rojsitthisak P., Wangsomboondee T., Seraypheap K. Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of ‘Nam Dok Mai’mango after harvest. Sci. Hortic. 2017;224:180–187. doi: 10.1016/j.scienta.2017.06.011. DOI

Drevinskas T., Naujokaitytė G., Maruška A., Kaya M., Sargin I., Daubaras R., Česonienė L. Effect of molecular weight of chitosan on the shelf life and other quality parameters of three different cultivars of Actinidia kolomikta (kiwifruit) Carbohydr. Polym. 2017;173:269–275. doi: 10.1016/j.carbpol.2017.06.002. PubMed DOI

Liu X., Tang C., Han W., Xuan H., Ren J., Zhang J., Ge L. Characterization and preservation effect of polyelectrolyte multilayer coating fabricated by carboxymethyl cellulose and chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2017;529:1016–1023. doi: 10.1016/j.colsurfa.2017.06.079. DOI

Deng Z., Jung J., Simonsen J., Wang Y., Zhao Y. Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. J. Food Sci. 2017;82:453–462. doi: 10.1111/1750-3841.13601. PubMed DOI

Prior R.L., Cao G., Martin A., Sofic E., McEwen J., O’Brien C., Lischner N., Ehlenfeldt M., Kalt W., Krewer G., et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998;46:2686–2693. doi: 10.1021/jf980145d. DOI

Pertuzatti P.B., Barcia M.T., Gómez-Alonso S., Godoy H.T., Hermosin-Gutierrez I. Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify Rabbiteye and Highbush blueberries. Food Chem. 2021;340:127958. doi: 10.1016/j.foodchem.2020.127958. PubMed DOI

Zhang L., Li X., Pang Y., Cai X., Lu J., Ren X., Kong Q. Phenolics composition and contents, as the key quality parameters of table grapes, may be influenced obviously and differently in response to short-term high temperature. LWT. 2021;149:111791. doi: 10.1016/j.lwt.2021.111791. DOI

Sirohi R., Tarafdar A., Singh S., Negi T., Gaur V.K., Gnansounou E., Bhartiraja B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020;314:123771. doi: 10.1016/j.biortech.2020.123771. PubMed DOI

Poni S., Gatti M., Palliotti A., Dai Z., Duchêne E., Truong T.T., Ferrarae G., Matarrese A.M.S., Gallotta A., Bellincontro A., et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018;234:445–462. doi: 10.1016/j.scienta.2017.12.035. DOI

El-Zaeddi H., Calín-Sánchez Á., Nowicka P., Martínez-Tomé J., Noguera-Artiaga L., Burló F., Wojdyło A., Carbonell-Barrachina Á. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem. 2017;226:179–186. doi: 10.1016/j.foodchem.2017.01.067. PubMed DOI

Farzaei M.H., Abbasabadi Z., Ardekani M.R.S., Rahimi R., Farzaei F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013;33:815–826. doi: 10.1016/S0254-6272(14)60018-2. PubMed DOI

Jancikova S., Jamróz E., Kulawik P., Tkaczewska J., Dordevic D. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. Int. J. Biol. Macromol. 2019;131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050. PubMed DOI

Rodríguez G.M., Sibaja J.C., Espitia P.J.P., Otoni C.G. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll. 2020;103:105630. doi: 10.1016/j.foodhyd.2019.105630. DOI

Alizadeh Behbahani B., Noshad M., Jooyandeh H. Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatal. Agric. Biotechnol. 2020;24:101563. doi: 10.1016/j.bcab.2020.101563. DOI

Balti R., Ben Mansour M., Zayoud N., Le Balc’h R., Brodu N., Arhaliass A., Massé A. Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Biosci. 2020;34:100522. doi: 10.1016/j.fbio.2019.100522. DOI

Ozdemir M., Floros J.D. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. J. Food Eng. 2008;86:215–224. doi: 10.1016/j.jfoodeng.2007.09.028. DOI

Kim S.J., Ustunol Z. Sensory Attributes of Whey Protein Isolate and Candelilla Wax Emulsion Edible Films. J. Food Sci. 2001;66:909–911. doi: 10.1111/j.1365-2621.2001.tb15195.x. DOI

Jancikova S., Dordevic D., Javurkova Z. Effect of gelling agents on colour characteristics of fruit jams. Iraqi J. Agric. Sci. 2019;50:675–688.

Luo M.R., Cui G., Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Colour Res. Appl. 2001;26:340–350. doi: 10.1002/col.1049. DOI

Sharma G. Colour fundamentals for digital imaging. In: Sharma G., editor. Digital Colour Imaging Handbook. CRC Press; Boca Raton, FL, USA: 2003. pp. 1–114.

Zifkin M., Jin A., Ozga J.A., Zaharia I.L., Schernthaner J.P., Gesell A., Abrams S.R., Kennedy J.A., Constabel C.P. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism. Plant Physiol. 2012;158:200–224. doi: 10.1104/pp.111.180950. PubMed DOI PMC

Wu Y., Zhang W., Yu W., Zhao L., Song S., Xu W., Zhang C., Ma C., Wang L., Wang S. Study on the volatile composition of table grapes of three aroma types. LWT. 2019;115:108450. doi: 10.1016/j.lwt.2019.108450. DOI

Khorram F., Ramezanian A., Hosseini S.M.H. Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci. Hortic. 2017;225:22–28. doi: 10.1016/j.scienta.2017.06.045. DOI

Mantilla N., Castell-Perez M.E., Gomes C., Moreira R.G. Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus) LWT—Food Sci. Technol. 2013;51:37–43. doi: 10.1016/j.lwt.2012.10.010. DOI

Zhao Y., McDaniel M. Sensory quality of foods associated with edible film and coating systems and shelf-life extension. In: Han J.H., editor. Innovations in Food Packaging. Academic Press; London, UK: 2005. pp. 434–453. DOI

Hansen L.T., Gill T., Hussa H.H. Effects of salt and storage temperature on chemical, microbiological and sensory changes in cold-smoked salmon. Food Res. Int. 1995;28:123–130. doi: 10.1016/0963-9969(95)90795-C. DOI

Gutiérrez T.J., Álvarez K. Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J. Funct. Foods. 2016;26:750–762. doi: 10.1016/j.jff.2016.08.054. DOI

Jiménez-Aguilar D.M., Ortega-Regules A.E., Lozada-Ramírez J.D., Pérez-Pérez M.C.I., Vernon-Carter E.J., Welti-Chanes J. Colour and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J. Food Compos. Anal. 2011;24:889–894. doi: 10.1016/j.jfca.2011.04.012. DOI

Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Coloured pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1361779. doi: 10.1080/16546628.2017.1361779. PubMed DOI PMC

Karača S., Trifković K., Bušić A., Đorđević V., Belščak-Cvitanović A., Vojvodić Cebin A., Bugarski B., Komes D. The functional potential of immortelle (Helichrysum italicum) based edible films reinforced with proteins and hydrogel particles. LWT. 2019;99:387–395. doi: 10.1016/j.lwt.2018.09.039. DOI

Poureini F., Mohammadi M., Najafpour G.D., Nikzad M. Comparative study on the extraction of apigenin from parsley leaves (Petroselinum crispum L.) by ultrasonic and microwave methods. Chem. Pap. 2020;74:3857–3871. doi: 10.1007/s11696-020-01208-z. DOI

Cosme F., Pinto T., Vilela A. Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages. 2018;4:22. doi: 10.3390/beverages4010022. DOI

Mazza G., Fukumoto L., Delaquis P., Girard B., Ewert B. Anthocyanins, phenolics, and colour of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem. 1999;47:4009–4017. doi: 10.1021/jf990449f. PubMed DOI

Burin V.M., Falcão L.D., Gonzaga L.V., Fett R., Rosier J.P., Bordignon-Luiz M.T. Colour, phenolic content and antioxidant activity of grape juice. Food Sci. Technol. 2010;30:1027–1032. doi: 10.1590/S0101-20612010000400030. DOI

Navarro R., Arancibia C., Herrera M.L., Matiacevich S. Effect of type of encapsulating agent on physical properties of edible films based on alginate and thyme oil. Food Bioprod. Process. 2016;97:63–75. doi: 10.1016/j.fbp.2015.11.001. DOI

Veiga-Santos P., Silva L.T., de Souza C.O., da Silva J.R., Albuquerque E.C., Druzian J.I. Coffee-cocoa additives for bio-based antioxidant packaging. Food Packag. Shelf Life. 2018;18:37–41. doi: 10.1016/j.fpsl.2018.08.005. DOI

Benítez S., Achaerandio I., Pujolà M., Sepulcre F. Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT–Food Sci. Technol. 2015;61:184–193. doi: 10.1016/j.lwt.2014.11.036. DOI

Jouki M., Khazaei N., Ghasemlou M., Hadinezhad M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym. 2013;96:39–46. doi: 10.1016/j.carbpol.2013.03.077. PubMed DOI

Khazaei N., Esmaiili M., Djomeh Z.E., Ghasemlou M., Jouki M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym. 2014;102:199–206. doi: 10.1016/j.carbpol.2013.10.062. PubMed DOI

Beikzadeh S., Khezerlou A., Jafari S.M., Pilevar Z., Mortazavian A.M. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Adv. Colloid Interface Sci. 2020;280:102164. doi: 10.1016/j.cis.2020.102164. PubMed DOI

Kaya M., Khadem S., Cakmak Y.S., Mujtaba M., Ilk S., Akyuz L., Salaberria A.M., Labidi J., Abdulqadir A.H., Deligöz E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018;8:3941–3950. doi: 10.1039/C7RA12070B. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...