Plant Byproducts as Part of Edible Coatings: A Case Study with Parsley, Grape and Blueberry Pomace
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FVHE/Tremlová/ITA2020
University of Veterinary Sciences Brno
PubMed
34372181
PubMed Central
PMC8348254
DOI
10.3390/polym13152578
PII: polym13152578
Knihovny.cz E-zdroje
- Klíčová slova
- CIELab, biodegradability, plant extracts, scanning electron microscopy, sensory,
- Publikační typ
- časopisecké články MeSH
Studies dealing with the development of edible/biodegradable packaging have been gaining popularity since these commodities are marked as being ecofriendly, especially when byproducts are incorporated. Consequently, this study aimed at the development of chitosan-based coatings with plant byproducts. Their sensory properties, colour attributes, occurrence of cracks in microstructure and biodegradability were analysed. Coatings containing grape and blueberry pomace had statistically significantly (p < 0.05) higher levels of colour intensity. Coating samples were characterised by lower aroma intensity (3.46-4.77), relatively smooth surface (2.40-5.86), and low stickiness (2.11-3.14). In the overall hedonic evaluation, the samples containing parsley pomace in all concentrations and a sample containing 5% grape pomace achieved a statistically significantly (p < 0.05) better evaluation (5.76-5.93). The lowest values of the parameter ΔE2000 were recorded for the sample containing 5% parsley pomace (3.5); the highest was for the sample with 20% blueberry pomace (39.3). An analysis of the coating surface microstructure showed the presence of surface cracks at an 80 K magnification but the protective function of the edible coating was not disrupted by the added plant pomace. The produced samples can be considered to have a high biodegradability rate. The results of our experimentally produced coatings indicate their possible application on a commercial scale.
Zobrazit více v PubMed
Jafarzadeh S., Nafchi A.M., Salehabadi A., Oladzad-abbasabadi N., Jafari S.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv. Colloid Interface Sci. 2021;291:102405. doi: 10.1016/j.cis.2021.102405. PubMed DOI
Al-Tayyar N.A., Youssef A.M., Al-Hindi R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020;26:e00215. doi: 10.1016/j.susmat.2020.e00215. DOI
Jancikova S., Dordevic D., Jamroz E., Behalova H., Tremlova B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods. 2020;9:357. doi: 10.3390/foods9030357. PubMed DOI PMC
Du Y., Yang F., Yu H., Cheng Y., Guo Y., Yao W., Xie Y. Fabrication of novel self-healing edible coating for fruits preservation and its performance maintenance mechanism. Food Chem. 2021;351:129284. doi: 10.1016/j.foodchem.2021.129284. PubMed DOI
Ezazi A., Javadi A., Jafarizadeh-Malmiri H., Mirzaei H. Development of a chitosan-propolis extract edible coating formulation based on physico-chemical attributes of hens‘ eggs: Optimization and characteristics edible coating of egg using chitosan and propolis. Food Biosci. 2021;40:100894. doi: 10.1016/j.fbio.2021.100894. DOI
Tavares L., Souza H.K., Gonçalves M.P., Rocha C.M. Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll. 2021;113:106471. doi: 10.1016/j.foodhyd.2020.106471. DOI
Quintana S.E., Llalla O., García-Risco M.R., Fornari T. Comparison between essential oils and supercritical extracts into chitosan-based edible coatings on strawberry quality during cold storage. J. Supercrit. Fluids. 2021;171:105198. doi: 10.1016/j.supflu.2021.105198. DOI
Santagata G., Mallardo S., Fasulo G., Lavermicocca P., Valerio F., Di Biase M., Di Stasio M., Malinconico M., Volpe M.G. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chem. 2018;258:104–110. doi: 10.1016/j.foodchem.2018.03.064. PubMed DOI
Xiong Y., Kamboj M., Ajlouni S., Fang Z. Incorporation of salmon bone gelatine with chitosan, gallic acid and clove oil as edible coating for the cold storage of fresh salmon fillet. Food Control. 2021;125:107994. doi: 10.1016/j.foodcont.2021.107994. DOI
Hellebois T., Tsevdou M., Soukoulis C. Functionalizing and bio-preserving processed food products via probiotic and synbiotic edible films and coatings. In: da Cruz A.G., Schwinden Prudencio E., Almeida Esmerino E., da Silva M.C., editors. Probiotic and Prebiotics in Foods: Challenges, Innovations and Advances. Volume 94. Academic Press; London, UK: 2020. pp. 161–221. PubMed
Kõrge K., Bajić M., Likozar B., Novak U. Active chitosan–chestnut extract films used for packaging and storage of fresh pasta. Int. J. Food Sci. Technol. 2020;55:3043–3052. doi: 10.1111/ijfs.14569. DOI
Jiang B., Wang L., Zhu M., Wu S., Wang X., Li D., Tian B. Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT. 2021;147:111617. doi: 10.1016/j.lwt.2021.111617. DOI
Jiang B., Wang X., Wang L., Wu S., Li D., Liu C., Feng Z. Fabrication and characterization of a microemulsion stabilized by integrated phosvitin and gallic acid. J. Agric. Food Chem. 2020;68:5437–5447. doi: 10.1021/acs.jafc.0c00945. PubMed DOI
Mileriene J., Serniene L., Henriques M., Gomes D., Pereira C., Kondrotiene K., Kasetiene N., Lauciene L., Sekmokiene D., Malakauskas M. Effect of liquid whey protein concentrate–based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J. Dairy Sci. 2021;104:1504–1517. doi: 10.3168/jds.2020-18732. PubMed DOI
Torres-León C., Vicente A.A., Flores-López M.L., Rojas R., Serna-Cock L., Alvarez-Pérez O.B., Aguilar C.N. Edible films and coatings based on mango (var. Ataulfo) by-products to improve gas transfer rate of peach. LWT. 2018;97:624–631. doi: 10.1016/j.lwt.2018.07.057. DOI
Suhag R., Kumar N., Petkoska A.T., Upadhyay A. Film formation and deposition methods of edible coating on food products: A review. Food Res. Int. 2020;136:109582. doi: 10.1016/j.foodres.2020.109582. PubMed DOI
Alfei S., Marengo B., Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res. Int. 2020;137:109664. doi: 10.1016/j.foodres.2020.109664. PubMed DOI
Wang Q., Liu W., Tian B., Li D., Liu C., Jiang B., Feng Z. Preparation and characterization of coating based on protein nanofibers and polyphenol and application for salted duck egg yolks. Foods. 2020;9:449. doi: 10.3390/foods9040449. PubMed DOI PMC
Cheba B.A. Chitosan: Properties, Modifications and Food Nanobiotechnology. Procedia Manuf. 2020;46:652–658. doi: 10.1016/j.promfg.2020.03.093. DOI
Fortunati E. Antimicrobial Food Packaging. Academic Press; London, UK: 2016. Chapter 38—Multifunctional Films, Blends, and Nanocomposites Based on Chitosan: Use in Antimicrobial Packaging; pp. 467–477. DOI
Jiang H., Sun Z., Jia R., Wang X., Huang J. Effect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. J. Food Qual. 2016;39:516–523. doi: 10.1111/jfq.12211. DOI
Nair M.S., Saxena A., Kaur C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.) Food Chem. 2018;240:245–252. doi: 10.1016/j.foodchem.2017.07.122. PubMed DOI
Silva G.M., Silva W.B., Medeiros D.B., Salvador A.R., Cordeiro M.H., da Silva N.M., Santana D.B., Mizobutsi G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017;237:372–378. doi: 10.1016/j.foodchem.2017.05.123. PubMed DOI
Awad M.A., Al-Qurashi A.D., Mohamed S.A., El-Shishtawy R.M. Quality and biochemical changes of ‘Hindi-Besennara’mangoes during shelf life as affected by chitosan, gallic acid and chitosan gallate. J. Food Sci. Technol. 2017;54:4139–4148. doi: 10.1007/s13197-017-2762-x. PubMed DOI PMC
Jongsri P., Rojsitthisak P., Wangsomboondee T., Seraypheap K. Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of ‘Nam Dok Mai’mango after harvest. Sci. Hortic. 2017;224:180–187. doi: 10.1016/j.scienta.2017.06.011. DOI
Drevinskas T., Naujokaitytė G., Maruška A., Kaya M., Sargin I., Daubaras R., Česonienė L. Effect of molecular weight of chitosan on the shelf life and other quality parameters of three different cultivars of Actinidia kolomikta (kiwifruit) Carbohydr. Polym. 2017;173:269–275. doi: 10.1016/j.carbpol.2017.06.002. PubMed DOI
Liu X., Tang C., Han W., Xuan H., Ren J., Zhang J., Ge L. Characterization and preservation effect of polyelectrolyte multilayer coating fabricated by carboxymethyl cellulose and chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2017;529:1016–1023. doi: 10.1016/j.colsurfa.2017.06.079. DOI
Deng Z., Jung J., Simonsen J., Wang Y., Zhao Y. Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. J. Food Sci. 2017;82:453–462. doi: 10.1111/1750-3841.13601. PubMed DOI
Prior R.L., Cao G., Martin A., Sofic E., McEwen J., O’Brien C., Lischner N., Ehlenfeldt M., Kalt W., Krewer G., et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998;46:2686–2693. doi: 10.1021/jf980145d. DOI
Pertuzatti P.B., Barcia M.T., Gómez-Alonso S., Godoy H.T., Hermosin-Gutierrez I. Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify Rabbiteye and Highbush blueberries. Food Chem. 2021;340:127958. doi: 10.1016/j.foodchem.2020.127958. PubMed DOI
Zhang L., Li X., Pang Y., Cai X., Lu J., Ren X., Kong Q. Phenolics composition and contents, as the key quality parameters of table grapes, may be influenced obviously and differently in response to short-term high temperature. LWT. 2021;149:111791. doi: 10.1016/j.lwt.2021.111791. DOI
Sirohi R., Tarafdar A., Singh S., Negi T., Gaur V.K., Gnansounou E., Bhartiraja B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020;314:123771. doi: 10.1016/j.biortech.2020.123771. PubMed DOI
Poni S., Gatti M., Palliotti A., Dai Z., Duchêne E., Truong T.T., Ferrarae G., Matarrese A.M.S., Gallotta A., Bellincontro A., et al. Grapevine quality: A multiple choice issue. Sci. Hortic. 2018;234:445–462. doi: 10.1016/j.scienta.2017.12.035. DOI
El-Zaeddi H., Calín-Sánchez Á., Nowicka P., Martínez-Tomé J., Noguera-Artiaga L., Burló F., Wojdyło A., Carbonell-Barrachina Á. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem. 2017;226:179–186. doi: 10.1016/j.foodchem.2017.01.067. PubMed DOI
Farzaei M.H., Abbasabadi Z., Ardekani M.R.S., Rahimi R., Farzaei F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013;33:815–826. doi: 10.1016/S0254-6272(14)60018-2. PubMed DOI
Jancikova S., Jamróz E., Kulawik P., Tkaczewska J., Dordevic D. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. Int. J. Biol. Macromol. 2019;131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050. PubMed DOI
Rodríguez G.M., Sibaja J.C., Espitia P.J.P., Otoni C.G. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll. 2020;103:105630. doi: 10.1016/j.foodhyd.2019.105630. DOI
Alizadeh Behbahani B., Noshad M., Jooyandeh H. Improving oxidative and microbial stability of beef using Shahri Balangu seed mucilage loaded with Cumin essential oil as a bioactive edible coating. Biocatal. Agric. Biotechnol. 2020;24:101563. doi: 10.1016/j.bcab.2020.101563. DOI
Balti R., Ben Mansour M., Zayoud N., Le Balc’h R., Brodu N., Arhaliass A., Massé A. Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Biosci. 2020;34:100522. doi: 10.1016/j.fbio.2019.100522. DOI
Ozdemir M., Floros J.D. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. J. Food Eng. 2008;86:215–224. doi: 10.1016/j.jfoodeng.2007.09.028. DOI
Kim S.J., Ustunol Z. Sensory Attributes of Whey Protein Isolate and Candelilla Wax Emulsion Edible Films. J. Food Sci. 2001;66:909–911. doi: 10.1111/j.1365-2621.2001.tb15195.x. DOI
Jancikova S., Dordevic D., Javurkova Z. Effect of gelling agents on colour characteristics of fruit jams. Iraqi J. Agric. Sci. 2019;50:675–688.
Luo M.R., Cui G., Rigg B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Colour Res. Appl. 2001;26:340–350. doi: 10.1002/col.1049. DOI
Sharma G. Colour fundamentals for digital imaging. In: Sharma G., editor. Digital Colour Imaging Handbook. CRC Press; Boca Raton, FL, USA: 2003. pp. 1–114.
Zifkin M., Jin A., Ozga J.A., Zaharia I.L., Schernthaner J.P., Gesell A., Abrams S.R., Kennedy J.A., Constabel C.P. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism. Plant Physiol. 2012;158:200–224. doi: 10.1104/pp.111.180950. PubMed DOI PMC
Wu Y., Zhang W., Yu W., Zhao L., Song S., Xu W., Zhang C., Ma C., Wang L., Wang S. Study on the volatile composition of table grapes of three aroma types. LWT. 2019;115:108450. doi: 10.1016/j.lwt.2019.108450. DOI
Khorram F., Ramezanian A., Hosseini S.M.H. Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci. Hortic. 2017;225:22–28. doi: 10.1016/j.scienta.2017.06.045. DOI
Mantilla N., Castell-Perez M.E., Gomes C., Moreira R.G. Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus) LWT—Food Sci. Technol. 2013;51:37–43. doi: 10.1016/j.lwt.2012.10.010. DOI
Zhao Y., McDaniel M. Sensory quality of foods associated with edible film and coating systems and shelf-life extension. In: Han J.H., editor. Innovations in Food Packaging. Academic Press; London, UK: 2005. pp. 434–453. DOI
Hansen L.T., Gill T., Hussa H.H. Effects of salt and storage temperature on chemical, microbiological and sensory changes in cold-smoked salmon. Food Res. Int. 1995;28:123–130. doi: 10.1016/0963-9969(95)90795-C. DOI
Gutiérrez T.J., Álvarez K. Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J. Funct. Foods. 2016;26:750–762. doi: 10.1016/j.jff.2016.08.054. DOI
Jiménez-Aguilar D.M., Ortega-Regules A.E., Lozada-Ramírez J.D., Pérez-Pérez M.C.I., Vernon-Carter E.J., Welti-Chanes J. Colour and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J. Food Compos. Anal. 2011;24:889–894. doi: 10.1016/j.jfca.2011.04.012. DOI
Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Coloured pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1361779. doi: 10.1080/16546628.2017.1361779. PubMed DOI PMC
Karača S., Trifković K., Bušić A., Đorđević V., Belščak-Cvitanović A., Vojvodić Cebin A., Bugarski B., Komes D. The functional potential of immortelle (Helichrysum italicum) based edible films reinforced with proteins and hydrogel particles. LWT. 2019;99:387–395. doi: 10.1016/j.lwt.2018.09.039. DOI
Poureini F., Mohammadi M., Najafpour G.D., Nikzad M. Comparative study on the extraction of apigenin from parsley leaves (Petroselinum crispum L.) by ultrasonic and microwave methods. Chem. Pap. 2020;74:3857–3871. doi: 10.1007/s11696-020-01208-z. DOI
Cosme F., Pinto T., Vilela A. Phenolic compounds and antioxidant activity in grape juices: A chemical and sensory view. Beverages. 2018;4:22. doi: 10.3390/beverages4010022. DOI
Mazza G., Fukumoto L., Delaquis P., Girard B., Ewert B. Anthocyanins, phenolics, and colour of Cabernet franc, Merlot, and Pinot noir wines from British Columbia. J. Agric. Food Chem. 1999;47:4009–4017. doi: 10.1021/jf990449f. PubMed DOI
Burin V.M., Falcão L.D., Gonzaga L.V., Fett R., Rosier J.P., Bordignon-Luiz M.T. Colour, phenolic content and antioxidant activity of grape juice. Food Sci. Technol. 2010;30:1027–1032. doi: 10.1590/S0101-20612010000400030. DOI
Navarro R., Arancibia C., Herrera M.L., Matiacevich S. Effect of type of encapsulating agent on physical properties of edible films based on alginate and thyme oil. Food Bioprod. Process. 2016;97:63–75. doi: 10.1016/j.fbp.2015.11.001. DOI
Veiga-Santos P., Silva L.T., de Souza C.O., da Silva J.R., Albuquerque E.C., Druzian J.I. Coffee-cocoa additives for bio-based antioxidant packaging. Food Packag. Shelf Life. 2018;18:37–41. doi: 10.1016/j.fpsl.2018.08.005. DOI
Benítez S., Achaerandio I., Pujolà M., Sepulcre F. Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT–Food Sci. Technol. 2015;61:184–193. doi: 10.1016/j.lwt.2014.11.036. DOI
Jouki M., Khazaei N., Ghasemlou M., Hadinezhad M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym. 2013;96:39–46. doi: 10.1016/j.carbpol.2013.03.077. PubMed DOI
Khazaei N., Esmaiili M., Djomeh Z.E., Ghasemlou M., Jouki M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym. 2014;102:199–206. doi: 10.1016/j.carbpol.2013.10.062. PubMed DOI
Beikzadeh S., Khezerlou A., Jafari S.M., Pilevar Z., Mortazavian A.M. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Adv. Colloid Interface Sci. 2020;280:102164. doi: 10.1016/j.cis.2020.102164. PubMed DOI
Kaya M., Khadem S., Cakmak Y.S., Mujtaba M., Ilk S., Akyuz L., Salaberria A.M., Labidi J., Abdulqadir A.H., Deligöz E. Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. RSC Adv. 2018;8:3941–3950. doi: 10.1039/C7RA12070B. DOI