Chemical and Physical Characteristics of Edible Films, Based on κ- and ι-Carrageenans with the Addition of Lapacho Tea Extract

. 2020 Mar 19 ; 9 (3) : . [epub] 20200319

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32204468

Grantová podpora
FVHE/Tremlová/ITA2019 University of Veterinary and Pharmaceutical Science Brno

The aim of the study was to characterize antioxidant and textural property differences of edible films prepared with the addition of lapacho extract (LE). The experimentally produced edible films also contained different carrageenans (ι- and κ-carrageenan). The κ- and ι-carrageenan, glycerol and the different addition of LE (5%, 10%, 20%) were used as ingredients for forming films. The pH and viscosity were measured for film forming solutions (before drying). The following analyses were performed on films: the total polyphenol content (TPC), Ferric Reducing Antioxidant Power (FRAP) and 2-Diphenyl-1-Picrylhydrazyl (DPPH). Optical parameters were analyzed by the determination of UV-Vis spectra. The structure of films was characterized by scanning electron microscopy. The gained results indicated that the use of different gelling agents (ι- and κ-carrageenan) resulted in statistically significant (p < 0.05) differences in textural properties (strength and breaking strain) of produced edible films. The highest antioxidant properties and TPC had a κ film with 20% LE (DPPH: 87.63 ± 0.03%; TPC: 233.75 ± 0.104 mg gallic acid/g). According to these results, it can be concluded that edible films with the highest concentrations of added lapacho extract can serve as a good source of antioxidant compounds. Certainly, these properties can be usefully incorporated into the wrapped food commodity.

Zobrazit více v PubMed

Salgado P.R., Ortiz C.M., Musso Y.S., Di Giorgio L., Mauri A.N. Edible films and coatings containing bioactives. Curr. Opin. Food Sci. 2015;5:86–92. doi: 10.1016/j.cofs.2015.09.004. DOI

Kester J.J., Fennema O.R. Edible films and coatings: A review. Food Technol. (USA) 1986;40:47–59.

Jaiswal L., Shankar S., Rhim J.W. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr. Polym. 2019;224:115191. doi: 10.1016/j.carbpol.2019.115191. PubMed DOI

Benbettaïeb N., Debeaufort F., Karbowiak T. Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Crit. Rev. Food Sci. Nutr. 2019;59:3431–3455. doi: 10.1080/10408398.2018.1494132. PubMed DOI

Dhanapal A., Sasikala P., Rajamani L., Kavitha V., Yazhini G., Banu M.S. Edible films from polysaccharides. Food Sci. Qual. Manag. 2012;3:9–17.

Necas J., Bartosikova L. Carrageenan: A review. Vet. Med. 2013;58:187–205. doi: 10.17221/6758-VETMED. DOI

Campo V.L., Kawano D.F., da Silva D.B., Jr., Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009;77:167–180. doi: 10.1016/j.carbpol.2009.01.020. DOI

Stanley N. Production, properties and uses of carrageenan. In: McHugh D.J., editor. Production and Utilization of Products from Commercial Seaweeds. FAO Fisheries Technical Paper. Food and Agriculture Organization of the United Nations; Rockland, ME, USA: 1987. pp. 116–146.

Da Rosa G.S., Vanga S.K., Gariepy Y., Raghavan V. Development of Biodegradable Films with Improved Antioxidant Properties Based on the Addition of Carrageenan Containing Olive Leaf Extract for Food Packaging Applications. J. Polym. Environ. 2020;28:123–130. doi: 10.1007/s10924-019-01589-7. DOI

Castellanos J.R.G., Prieto J.M., Heinrich M. Red Lapacho (Tabebuia impetiginosa)—A global ethnopharmacological commodity? J. Ethnopharmacol. 2009;121:1–13. doi: 10.1016/j.jep.2008.10.004. PubMed DOI

Ajila C.M., Brar S.K., Verma M., Tyagi R.D., Godbout S., Valero J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011;31:227–249. doi: 10.3109/07388551.2010.513677. PubMed DOI

Christaki E., Bonos E., Giannenas I., Florou-Paneri P. Aromatic plants as a source of bioactive compounds. Agriculture. 2012;2:228–243. doi: 10.3390/agriculture2030228. DOI

Dobson C.C., Mottawea W., Rodrigue A., Pereira B., Hammami R., Power K.A., Bordenave N. Advances in Food and Nutrition Research. Academic Press; Cambridge, UK: 2019. Impact of molecular interactions with phenolic compounds on food polysaccharides functionality; pp. 135–181. PubMed

Liu Y., Qin Y., Bai R., Zhang X., Yuan L., Liu J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int. J. Biol. Macromol. 2019;134:993–1001. doi: 10.1016/j.ijbiomac.2019.05.175. PubMed DOI

Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI

Sivarooban T., Hettiarachchy N.S., Johnson M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008;41:781–785. doi: 10.1016/j.foodres.2008.04.007. DOI

Tomadoni B., Cassani L., Ponce A., Moreira M.D.R., Agüero M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI

Jeszka-Skowron M., Zgoła-Grześkowiak A. Analysis of antioxidant activity, chlorogenic acid, and rutin content of Camellia sinensis infusions using response surface methodology optimization. Food Anal. Methods. 2014;7:2033–2041. doi: 10.1007/s12161-014-9847-1. DOI

Kapilraj N., Keerthanan S., Sithambaresan M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their pKa Value. J. Chem. 2019 doi: 10.1155/2019/2031342. DOI

Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI

Yadav M., Chiu F.C. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydr. Polym. 2019;211:181–194. doi: 10.1016/j.carbpol.2019.01.114. PubMed DOI

Ghani N.A.A., Othaman R., Ahmad A., Anuar F.H., Hassan N.H. Impact of purification on iota carrageenan as solid polymer electrolyte. Arab. J. Chem. 2019;12:370–376. doi: 10.1016/j.arabjc.2018.06.008. DOI

Fernandes A.W.C., dos Anjos Santos V.L., Araújo C.R.M., da Cruz Araújo E.C., de Oliveira H.P., da Costa M.M. Antimicrobial activityand FTIR characterizationof lapachol derivatives against Staphylococcus aureus. Afr. J. Microbiol. Res. 2017;11:915–919.

Gennadios A., Weller C.L., Testin R.F. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chem. 1993;70:426–429.

Gontard N., Guilbert S., Cuq J.L. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 1992;57:190–199. doi: 10.1111/j.1365-2621.1992.tb05453.x. DOI

Embuscado M.E., Huber K.C. Edible Films and Coatings for Food Applications. Volume 9 Springer; New York, NY, USA: 2009.

Jancikova S., Jamróz E., Kulawik P., Tkaczewska J., Dordevic D. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. Int. J. Biol. Macromol. 2019;131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050. PubMed DOI

Kanmani P., Rhim J.W. Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydr. Polym. 2014;102:708–716. doi: 10.1016/j.carbpol.2013.10.099. PubMed DOI

Coles R., McDowell D., Kirwan M.J. Food Packaging Technology. Taylor & Francis Inc.; Bosa Roca, FL, USA: 2003.

De Souza M.C.R., Marques C.T., Dore C.M.G., da Silva F.R.F., Rocha H.A.O., Leite E.L. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J. Appl. Phycol. 2007;19:153–160. doi: 10.1007/s10811-006-9121-z. PubMed DOI PMC

Renard C.M., Watrelot A.A., Le Bourvellec C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci. Technol. 2017;60:43–51. doi: 10.1016/j.tifs.2016.10.022. DOI

Wong S.P., Leong L.P., Koh J.H.W. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006;99:775–783. doi: 10.1016/j.foodchem.2005.07.058. DOI

Schlesier K., Harwat M., Böhm V., Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002;36:177–187. doi: 10.1080/10715760290006411. PubMed DOI

Kedare S.B., Singh R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011;48:412–422. doi: 10.1007/s13197-011-0251-1. PubMed DOI PMC

Wang L., Dong Y., Men H., Tong J., Zhou J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll. 2013;32:35–41. doi: 10.1016/j.foodhyd.2012.11.034. DOI

Lin D., Zhao Y. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr. Rev. Food Sci. Food. 2007;6:60–75. doi: 10.1111/j.1541-4337.2007.00018.x. DOI

Gai A.P.C., dos Santos D.S., Vieira E.A. Effects of zinc excess on antioxidant metabolism, mineral content and initial growth of Handroanthus impetiginosus (Mart. ex DC.) Mattos and Tabebuia roseoalba (Ridl.) Sandwith. Environ. Exp. Bot. 2017;144:88–99. doi: 10.1016/j.envexpbot.2017.09.006. DOI

Ma Q., Ren Y., Gu Z., Wang L. Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. J. Clean. Prod. 2017;166:851–859. doi: 10.1016/j.jclepro.2017.08.099. DOI

Forney L.J., Moraru C.I. Ultraviolet Light in Food Technology: Principles and Applications. CRC Press; Boca Raton, FL, USA: 2009.

Licari J.J., Swanson D.W. Adhesives Technology for Electronic Applications: Materials, Processing, Reliability. 2nd ed. Elsevier; Oxford, UK: 2011.

Choudhary R., Bandla S. Ultraviolet pasteurization for food industry. Int. J. Food Sci. Nutr. Eng. 2012;2:12–15. doi: 10.5923/j.food.20120201.03. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...