Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil

. 2023 Jul 07 ; 12 (13) : . [epub] 20230707

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37444364

Grantová podpora
Internal Grant Agency IGA VETUNI Brno 217/2022/FVHE University of Veterinary and Pharmaceutical Sciences

BACKGROUND: Following petroleum, coffee ranks as the second most extensively exchanged commodity worldwide. The definition of spent coffee ground (SCG) can be outlined as the waste generated after consuming coffee. The aims of the study are to produce edible/biodegradable packaging with the addition of spent coffee grounds (SCG) oil and to investigate how this fortification can affect chemical, textural, and solubility properties of experimentally produced films. METHODS: The produced films were based on κ-carrageenan and pouring-drying techniques in petri dishes. Two types of emulsifiers were used: Tween 20 and Tween 80. The films were analyzed by antioxidant and textural analysis, and their solubility was also tested. RESULTS: Edible/biodegradable packaging samples produced with the addition of SCG oil showed higher (p < 0.05) antioxidant capacity in comparison with control samples produced without the addition of SCG oil. The results of the research showed that the fortification of edible/biodegradable packaging with the addition of SCG oil changed significantly (p < 0.05) both chemical and physical properties of the films. CONCLUSIONS: Based on the findings obtained, it was indicated that films manufactured utilizing SCG oil possess considerable potential to serve as an effective and promising material for active food packaging purposes.

Zobrazit více v PubMed

Bhatia S.K., Kim J.-H., Kim M.-S., Kim J., Hong J.W., Hong Y.G., Kim H.-J., Jeon J.-M., Kim S.-H., Ahn J., et al. Production of (3-Hydroxybutyrate-Co-3-Hydroxyhexanoate) Copolymer from Coffee Waste Oil Using Engineered Ralstonia Eutropha. Bioprocess. Biosyst. Eng. 2018;41:229–235. doi: 10.1007/s00449-017-1861-4. PubMed DOI

Campos-Vega R., Loarca-Piña G., Vergara-Castañeda H.A., Oomah B.D. Spent Coffee Grounds: A Review on Current Research and Future Prospects. Trends Food Sci. Technol. 2015;45:24–36. doi: 10.1016/j.tifs.2015.04.012. DOI

Zhang L., Sun X. Using Cow Dung and Spent Coffee Grounds to Enhance the Two-Stage Co-Composting of Green Waste. Bioresour. Technol. 2017;245:152–161. doi: 10.1016/j.biortech.2017.08.147. PubMed DOI

Murthy P.S., Madhava Naidu M. Sustainable Management of Coffee Industry By-Products and Value Addition—A Review. Resour. Conserv. Recycl. 2012;66:45–58. doi: 10.1016/j.resconrec.2012.06.005. DOI

Lessa E.F., Nunes M.L., Fajardo A.R. Chitosan/Waste Coffee-Grounds Composite: An Efficient and Eco-Friendly Adsorbent for Removal of Pharmaceutical Contaminants from Water. Carbohydr. Polym. 2018;189:257–266. doi: 10.1016/j.carbpol.2018.02.018. PubMed DOI

Vítězová M., Jančiková S., Dordević D., Vítěz T., Elbl J., Hanišáková N., Jampílek J., Kushkevych I. The Possibility of Using Spent Coffee Grounds to Improve Wastewater Treatment Due to Respiration Activity of Microorganisms. Appl. Sci. 2019;9:3155. doi: 10.3390/app9153155. DOI

Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:5883–5890. doi: 10.1007/s00253-014-5653-3. PubMed DOI

Mussatto S.I., Carneiro L.M., Silva J.P.A., Roberto I.C., Teixeira J.A. A Study on Chemical Constituents and Sugars Extraction from Spent Coffee Grounds. Carbohydr. Polym. 2011;83:368–374. doi: 10.1016/j.carbpol.2010.07.063. DOI

Mussatto S.I., Ballesteros L.F., Martins S., Teixeira J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011;83:173–179. doi: 10.1016/j.seppur.2011.09.036. DOI

Pasin L.A.A.P., de Abreu M.S., Souza I.P. Influence of the Fungi Population on the Physicochemical and Chemical Composition of Coffee (Coffea arabica L.) Ciênc. Tecnol. Aliment. 2011;31:681–687. doi: 10.1590/S0101-20612011000300020. DOI

Esquivel P., Jiménez V.M. Functional Properties of Coffee and Coffee By-Products. Food Res. Int. 2012;46:488–495. doi: 10.1016/j.foodres.2011.05.028. DOI

Farah A., Donangelo C.M. Phenolic Compounds in Coffee. Braz. J. Plant Physiol. 2006;18:23–36. doi: 10.1590/S1677-04202006000100003. DOI

Al-Hamamre Z., Foerster S., Hartmann F., Kröger M., Kaltschmitt M. Oil Extracted from Spent Coffee Grounds as a Renewable Source for Fatty Acid Methyl Ester Manufacturing. Fuel. 2012;96:70–76. doi: 10.1016/j.fuel.2012.01.023. DOI

Leow Y., Yew P.Y.M., Chee P.L., Loh X.J., Kai D. Recycling of Spent Coffee Grounds for Useful Extracts and Green Composites. RSC Adv. 2021;11:2682–2692. doi: 10.1039/D0RA09379C. PubMed DOI PMC

Dang C.-H., Nguyen T.-D. Physicochemical Characterization of Robusta Spent Coffee Ground Oil for Biodiesel Manufacturing. Waste Biomass Valor. 2019;10:2703–2712. doi: 10.1007/s12649-018-0287-9. DOI

Dordevic D., Necasova L., Antonic B., Jancikova S., Tremlová B. Plastic Cutlery Alternative: Case Study with Biodegradable Spoons. Foods. 2021;10:1612. doi: 10.3390/foods10071612. PubMed DOI PMC

Dordevic S., Dordevic D., Sedlacek P., Kalina M., Tesikova K., Antonic B., Tremlova B., Treml J., Nejezchlebova M., Vapenka L., et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers. 2021;13:3388. doi: 10.3390/polym13193388. PubMed DOI PMC

Wang Q., Liu W., Tian B., Li D., Liu C., Jiang B., Feng Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods. 2020;9:449. doi: 10.3390/foods9040449. PubMed DOI PMC

Lombo Vidal O., Tsukui A., Garrett R., Miguez Rocha-Leão M.H., Piler Carvalho C.W., Pereira Freitas S., Moraes de Rezende C., Simões Larraz Ferreira M. Production of Bioactive Films of Carboxymethyl Cellulose Enriched with Green Coffee Oil and Its Residues. Int. J. Biol. Macromol. 2020;146:730–738. doi: 10.1016/j.ijbiomac.2019.10.123. PubMed DOI

Moustafa H., Guizani C., Dufresne A. Sustainable Biodegradable Coffee Grounds Filler and Its Effect on the Hydrophobicity, Mechanical and Thermal Properties of Biodegradable PBAT Composites: ARTICLE. J. Appl. Polym. Sci. 2017;134:44498. doi: 10.1002/app.44498. DOI

Moustafa H., Guizani C., Dupont C., Martin V., Jeguirim M., Dufresne A. Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustain. Chem. Eng. 2017;5:1906–1916. doi: 10.1021/acssuschemeng.6b02633. DOI

Moustafa H., El-Wakil A.E.-A.A., Nour M.T., Youssef A.M. Kenaf Fibre Treatment and Its Impact on the Static, Dynamic, Hydrophobicity and Barrier Properties of Sustainable Polystyrene Biocomposites. RSC Adv. 2020;10:29296–29305. doi: 10.1039/D0RA05334A. PubMed DOI PMC

Ozdemir M., Floros J.D. Active Food Packaging Technologies. Crit. Rev. Food Sci. Nutr. 2004;44:185–193. doi: 10.1080/10408690490441578. PubMed DOI

Maryam Adilah Z.A., Jamilah B., Nur Hanani Z.A. Functional and Antioxidant Properties of Protein-Based Films Incorporated with Mango Kernel Extract for Active Packaging. Food Hydrocoll. 2018;74:207–218. doi: 10.1016/j.foodhyd.2017.08.017. DOI

Speer K., Kölling-Speer I. The Lipid Fraction of the Coffee Bean. Braz. J. Plant Physiol. 2006;18:201–216. doi: 10.1590/S1677-04202006000100014. DOI

Richards A.B., Krakowka S., Dexter L.B., Schmid H., Wolterbeek A.P.M., Waalkens-Berendsen D.H., Shigoyuki A., Kurimoto M. Trehalose: A Review of Properties, History of Use and Human Tolerance, and Results of Multiple Safety Studies. Food Chem. Toxicol. 2002;40:871–898. doi: 10.1016/S0278-6915(02)00011-X. PubMed DOI

Lv F., Liang H., Yuan Q., Li C. In Vitro Antimicrobial Effects and Mechanism of Action of Selected Plant Essential Oil Combinations against Four Food-Related Microorganisms. Food Res. Int. 2011;44:3057–3064. doi: 10.1016/j.foodres.2011.07.030. DOI

Liu T., Zhu L., Zhang Z., Huang H., Zhang Z., Jiang L. Protective Role of Trehalose during Radiation and Heavy Metal Stress in Aureobasidium Subglaciale F134. Sci. Rep. 2017;7:17586. doi: 10.1038/s41598-017-15489-0. PubMed DOI PMC

Tomadoni B., Cassani L., Ponce A., Moreira M.R., Agüero M.V. Optimization of Ultrasound, Vanillin and Pomegranate Extract Treatment for Shelf-Stable Unpasteurized Strawberry Juice. LWT Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI

Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI

Sivarooban T., Hettiarachchy N.S., Johnson M.G. Physical and Antimicrobial Properties of Grape Seed Extract, Nisin, and EDTA Incorporated Soy Protein Edible Films. Food Res. Int. 2008;41:781–785. doi: 10.1016/j.foodres.2008.04.007. DOI

Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI

Apak R., Güçlü K., Özyürek M., Karademir S.E. Novel Total Antioxidant Capacity Index for Dietary Polyphenols and Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004;52:7970–7981. doi: 10.1021/jf048741x. PubMed DOI

Khalifa I., Barakat H., El-Mansy H.A., Soliman S.A. Improving the Shelf-Life Stability of Apple and Strawberry Fruits Applying Chitosan-Incorporated Olive Oil Processing Residues Coating. Food Packag. Shelf Life. 2016;9:10–19. doi: 10.1016/j.fpsl.2016.05.006. DOI

Kovalcik A., Obruca S., Marova I. Valorization of Spent Coffee Grounds: A Review. Food Bioprod. Process. 2018;110:104–119. doi: 10.1016/j.fbp.2018.05.002. DOI

Ekwenye U. Chemical Characteristics of Palm Oil Biodeterioration. Biokemistri. 2006;18:141–149. doi: 10.4314/biokem.v18i2.56415. DOI

Dordevic D., Kushkevych I., Jancikova S., Zeljkovic S.C., Zdarsky M., Hodulova L. Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations. Open Life Sci. 2020;15:606–618. doi: 10.1515/biol-2020-0064. PubMed DOI PMC

Dordevic D., Dordevic S., Ćavar-Zeljković S., Kulawik P., Kushkevych I., Tremlová B., Kalová V. Monitoring the Quality of Fortified Cold-Pressed Rapeseed Oil in Different Storage Conditions. Eur. Food Res. Technol. 2022;248:2695–2705. doi: 10.1007/s00217-022-04079-8. DOI

Nosari A.B.F.L., Lima J.F., Serra O.A., Freitas L.A.P. Improved Green Coffee Oil Antioxidant Activity for Cosmetical Purpose by Spray Drying Microencapsulation. Rev. Bras. Farmacogn. 2015;25:307–311. doi: 10.1016/j.bjp.2015.04.006. DOI

Salazar-López N.J., López-Rodríguez C.V., Hernández-Montoya D.A., Campos-Vega R. Health Benefits of Spent Coffee Grounds. In: Campos-Vega R., Oomah B.D., Vergara-Castañeda H.A., editors. Food Wastes and By-Products. Wiley; New York, NY, USA: 2020. pp. 327–351.

Pérez-Rosés R., Risco E., Vila R., Peñalver P., Cañigueral S. Antioxidant Activity of Tween-20 and Tween-80 Evaluated through Different in-Vitro Tests. J. Pharm. Pharmacol. 2015;67:666–672. doi: 10.1111/jphp.12369. PubMed DOI

Schmidt A., Koulov A., Huwyler J., Mahler H.-C., Jahn M. Stabilizing Polysorbate 20 and 80 against Oxidative Degradation. J. Pharm. Sci. 2020;109:1924–1932. doi: 10.1016/j.xphs.2020.03.003. PubMed DOI

Muangrat R., Pongsirikul I. Recovery of Spent Coffee Grounds Oil Using Supercritical CO2: Extraction Optimisation and Physicochemical Properties of Oil. CyTA-J. Food. 2019;17:334–346. doi: 10.1080/19476337.2019.1580771. DOI

Jiang Z.L., Wang A.L., Li X.H., Zhu M.P., Wang J.W. Effects of Chitosan-Based Coating and Modified Atmosphere Packaging (MAP) on Browning of Sweet Persimmons (Diospy kakilinn.f) Adv. Mater. Res. 2012;557–559:943–946. doi: 10.4028/www.scientific.net/AMR.557-559.943. DOI

Mahajan K., Kumar S., Bhat Z.F., Naqvi Z., Jayawardena R. Development of Bioactive Edible Film Using Phytochemicals from Aloe Vera for Improved Microbial and Lipid Oxidative Stability of Frozen Dairy Products. Food Bioprocess. Technol. 2021;14:2120–2133. doi: 10.1007/s11947-021-02699-8. DOI

da Silva L.A., de Almeida T.M.B., Teixeira R.V., de Araújo E.S., Aquino K.A.d.S. Study of Coffee Grounds Oil Action in PVC Matrix Exposed to Gamma Radiation: Comparison of Systems in Film and Specimen Forms. Mater. Res. 2017;20:709–715. doi: 10.1590/1980-5373-mr-2016-0985. DOI

Liu Y., Liu M., Yan H., Liu H., Liu J., Zhao Y., Wu Y., Zhang Y., Han J. Enhanced Solubility of Bisdemethoxycurcumin by Interaction with Tween Surfactants: Spectroscopic and Coarse-Grained Molecular Dynamics Simulation Studies. J. Mol. Liq. 2021;323:115073. doi: 10.1016/j.molliq.2020.115073. DOI

Abdillah A.A., Charles A.L. Characterization of a Natural Biodegradable Edible Film Obtained from Arrowroot Starch and Iota-Carrageenan and Application in Food Packaging. Int. J. Biol. Macromol. 2021;191:618–626. doi: 10.1016/j.ijbiomac.2021.09.141. PubMed DOI

Ratanajiajaroen P., Watthanaphanit A., Tamura H., Tokura S., Rujiravanit R. Release Characteristic and Stability of Curcumin Incorporated in β-Chitin Non-Woven Fibrous Sheet Using Tween 20 as an Emulsifier. Eur. Polym. J. 2012;48:512–523. doi: 10.1016/j.eurpolymj.2011.11.020. DOI

Ma Q., Zhang Y., Zhong Q. Physical and Antimicrobial Properties of Chitosan Films Incorporated with Lauric Arginate, Cinnamon Oil, and Ethylenediaminetetraacetate. LWT-Food Sci. Technol. 2016;65:173–179. doi: 10.1016/j.lwt.2015.08.012. DOI

Garcia C.V., Kim Y.-T. Spent Coffee Grounds and Coffee Silverskin as Potential Materials for Packaging: A Review. J. Polym. Environ. 2021;29:2372–2384. doi: 10.1007/s10924-021-02067-9. DOI

Jaisan C. Niramol Punbusayakul Development of Coffee Pulp Extract-Incorporated Chitosan Film and Its Antimicrobial and Antioxidant Activities. KKU Res. J. 2016;21((Suppl. 14)):140–149. doi: 10.14456/KKURJ.2016.17. DOI

Collazo-Bigliardi S., Ortega-Toro R., Chiralt A. Using Lignocellulosic Fractions of Coffee Husk to Improve Properties of Compatibilised Starch-PLA Blend Films. Food Packag. Shelf Life. 2019;22:100423. doi: 10.1016/j.fpsl.2019.100423. DOI

Dobson C.C., Mottawea W., Rodrigue A., Buzati Pereira B.L., Hammami R., Power K.A., Bordenave N. Advances in Food and Nutrition Research. Volume 90. Elsevier; Amsterdam, The Netherlands: 2019. Impact of Molecular Interactions with Phenolic Compounds on Food Polysaccharides Functionality; pp. 135–181. PubMed

Bulut S., Lazic V., Popovic S., Hromis N., Suput D. Influence of Different Concentrations of Glycerol and Guar Xanthan on Properties of Pumpkin Oil Cake-Zein Bi-Layer Film. Ratar. I Povrt. 2017;54:19–24. doi: 10.5937/ratpov54-11947. DOI

Huber K.C., Embuscado M.E., editors. Edible Films and Coatings for Food Applications. Springer; New York, NY, USA: 2009.

Jancikova S., Dordevic D., Jamroz E., Behalova H., Tremlova B. Chemical and Physical Characteristics of Edible Films, Based on κ- and ι-Carrageenans with the Addition of Lapacho Tea Extract. Foods. 2020;9:357. doi: 10.3390/foods9030357. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...