Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
211/2021/FVHE
University of Veterinary Sciences Brno
PubMed
38928775
PubMed Central
PMC11202819
DOI
10.3390/foods13121833
PII: foods13121833
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, antioxidant properties, food waste valorization, polyphenols, sustainable packaging,
- Publikační typ
- časopisecké články MeSH
Coffee ranks as the second most consumed beverage globally, and its popularity is associated with the growing accumulation of spent coffee grounds (SCG), a by-product that, if not managed properly, constitutes a serious ecological problem. Analyses of SCG have repeatedly shown that they are a source of substances with antioxidant and antimicrobial properties. In this study, we assessed SCG as a substrate for the production of edible/biodegradable films. The κ-carrageenan was utilized as a base polymer and the emulsified SCG oil as a filler. The oil pressed from a blend of Robusta and Arabica coffee had the best quality and the highest antioxidant properties; therefore, it was used for film production. The film-forming solution was prepared by dissolving κ-carrageenan in distilled water at 50 °C, adding the emulsified SCG oil, and homogenizing. This solution was cast onto Petri dishes and dried at room temperature. Chemical characterization showed that SCG increased the level of polyphenols in the films and the antioxidant properties, according to the CUPRAC assay (CC1 23.90 ± 1.23 µmol/g). SCG performed as a good plasticizer for κ-carrageenan and enhanced the elongation at the break of the films, compared with the control samples. The solubility of all SCG films reached 100%, indicating their biodegradability and edibility. Our results support the application of SCG as an active and easily accessible compound for the food packaging industry.
Zobrazit více v PubMed
Statista.Com. [(accessed on 3 August 2023)]. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/
World Economic Forum, Ellen MacArthur Foundation, and McKinsey and Company (2016). The New Plastics Economy-Rethinking the Future of Plastics. [(accessed on 3 August 2023)]. Available online: https://www.weforum.org/press/2016/01/more-plastic-than-fish-in-the-ocean-by-2050-report-offers-blueprint-for-change/
OECD.Org. [(accessed on 3 August 2023)]. Available online: https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm.
Santos É.M.D., Macedo L.M.D., Tundisi L.L., Ataide J.A., Camargo G.A., Alves R.C., Oliveira M.B.P.P., Mazzola P.G. Coffee By-Products in Topical Formulations: A Review. Trends Food Sci. Technol. 2021;111:280–291. doi: 10.1016/j.tifs.2021.02.064. DOI
Skorupa A., Worwąg M., Kowalczyk M. Coffee Industry and Ways of Using By-Products as Bioadsorbents for Removal of Pollutants. Water. 2022;15:112. doi: 10.3390/w15010112. DOI
Oliveira G., Passos C.P., Ferreira P., Coimbra M.A., Gonçalves I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods. 2021;10:683. doi: 10.3390/foods10030683. PubMed DOI PMC
Klingel T., Kremer J.I., Gottstein V., Rajcic De Rezende T., Schwarz S., Lachenmeier D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods. 2020;9:665. doi: 10.3390/foods9050665. PubMed DOI PMC
Statista.Com. [(accessed on 4 August 2023)]. Available online: https://www.statista.com/statistics/292595/global-coffee-consumption/
Lee K.-T., Shih Y.-T., Rajendran S., Park Y.-K., Chen W.-H. Spent Coffee Ground Torrefaction for Waste Remediation and Valorization. Environ. Pollut. 2023;324:121330. doi: 10.1016/j.envpol.2023.121330. PubMed DOI
Zhang L., Sun X. Using Cow Dung and Spent Coffee Grounds to Enhance the Two-stage Co-Composting of Green Waste. Bioresour. Technol. 2017;245:152–161. doi: 10.1016/j.biortech.2017.08.147. PubMed DOI
Forcina A., Petrillo A., Travaglioni M., Di Chiara S., De Felice F. A Comparative Life Cycle Assessment of Different Spent Coffee Ground Reuse Strategies and a Sensitivity Analysis for Verifying the Environmental Convenience Based on the Location of Sites. J. Clean. Prod. 2023;385:135727. doi: 10.1016/j.jclepro.2022.135727. DOI
Passos C.P., Rudnitskaya A., Neves J.M.M.G.C., Lopes G.R., Evtuguin D.V., Coimbra M.A. Structural Features of Spent Coffee Grounds Water-Soluble Polysaccharides: Towards Tailor-Made Microwave Assisted Extractions. Carbohydr. Polym. 2019;214:53–61. doi: 10.1016/j.carbpol.2019.02.094. PubMed DOI
Bomfim A.S.C.D., De Oliveira D.M., Walling E., Babin A., Hersant G., Vaneeckhaute C., Dumont M.-J., Rodrigue D. Spent Coffee Grounds Characterization and Reuse in Composting and Soil Amendment. Waste. 2022;1:2–20. doi: 10.3390/waste1010002. DOI
Wang Y., Wang X., Hu G., Al-Romaima A., Liu X., Bai X., Li J., Li Z., Qiu M. Effect of Green Coffee Oil as a Natural Active Emulsifying Agent on the Properties of Corn Starch-Based Films. LWT. 2022;170:114087. doi: 10.1016/j.lwt.2022.114087. DOI
Davis A.P., Rakotonasolo F. Six New Species of Coffee (Coffea) from Northern Madagascar. Kew Bull. 2021;76:497–511. doi: 10.1007/s12225-021-09952-5. DOI
Bosmali I., Lagiotis G., Stavridou E., Haider N., Osathanunkul M., Pasentsis K., Madesis P. Novel Authentication Approach for Coffee Beans and the Brewed Beverage Using a Nuclear-Based Species-Specific Marker Coupled with High Resolution Melting Analysis. LWT. 2021;137:110336. doi: 10.1016/j.lwt.2020.110336. DOI
Wagemaker T.A.L., Carvalho C.R.L., Maia N.B., Baggio S.R., Guerreiro Filho O. Sun Protection Factor, Content and Composition of Lipid Fraction of Green Coffee Beans. Ind. Crops Prod. 2011;33:469–473. doi: 10.1016/j.indcrop.2010.10.026. DOI
Piotr Konieczka P., Aliaño-González M.J., Ferreiro-González M., Barbero G.F., Palma M. Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum. Sensors. 2020;20:3123. doi: 10.3390/s20113123. PubMed DOI PMC
D’Amelio N., De Angelis E., Navarini L., Schievano E., Mammi S. Green Coffee Oil Analysis by High-Resolution Nuclear Magnetic Resonance Spectroscopy. Talanta. 2013;110:118–127. doi: 10.1016/j.talanta.2013.02.024. PubMed DOI
Lin Y.-T., We Y.-L., Kao Y.-M., Tseng S.-H., Wang D.-Y., Chen S.-Y. Authentication of Coffee Blends by 16-O-Methylcafestol Quantification Using NMR Spectroscopy. Processes. 2023;11:871. doi: 10.3390/pr11030871. DOI
FDA.Gov. [(accessed on 14 August 2023)]; Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.620/
Tomadoni B., Cassani L., Ponce A., Moreira M.R., Agüero M.V. Optimization of Ultrasound, Vanillin and Pomegranate Extract Treatment for Shelf-Stable Unpasteurized Strawberry Juice. LWT—Food Sci. Technol. 2016;72:475–484. doi: 10.1016/j.lwt.2016.05.024. DOI
Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI
Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. DOI
Apak R., Güçlü K., Demirata B., Özyürek M., Çelik S., Bektaşoğlu B., Berker K., Özyurt D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules. 2007;12:1496–1547. doi: 10.3390/12071496. PubMed DOI PMC
Khalifa I., Barakat H., El-Mansy H.A., Soliman S.A. Improving the Shelf-Life Stability of Apple and Strawberry Fruits Applying Chitosan-Incorporated Olive Oil Processing Residues Coating. Food Packag. Shelf Life. 2016;9:10–19. doi: 10.1016/j.fpsl.2016.05.006. DOI
Symoniuk E., Ratusz K., Krygier K. Evaluation of the Oxidative Stability of Cold-Pressed Rapeseed Oil by Rancimat and Pressure Differential Scanning Calorimetry Measurements. Eur. J. Lipid Sci. Technol. 2019;121:1800017. doi: 10.1002/ejlt.201800017. PubMed DOI PMC
Merillon J.M. Bioactive Molecules in Food. Springer Berlin Heidelberg; New York, NY, USA: 2019.
Issaoui M., Delgado A.M. Grading, Labeling and Standardization of Edible Oils. In: Ramadan M.F., editor. Fruit Oils: Chemistry and Functionality. Springer International Publishing; Cham, Switzerland: 2019. pp. 9–52.
Panpraneecharoen S. Optimization of the Oil Extraction, Study the Chemical and Physical Properties of Arabica Spent Coffee Grounds. Sci. Technol. Asia. 2020;25:1219. doi: 10.14456/SCITECHASIA.2020.45. DOI
Bijla L., Aissa R., Bouzid H.A., Sakar E.H., Ibourki M., Gharby S. Spent Coffee Ground Oil as a Potential Alternative for Vegetable Oil Production: Evidence from Oil Content, Lipid Profiling, and Physicochemical Characterization. Biointerface Res. Appl. Chem. 2021;12:6308–6320. doi: 10.33263/BRIAC125.63086320. DOI
Kusnandar F. Prediction of Acid, Peroxide and TBA values of Heat-Treated Palm Oil Using a Partial Least Squares–Ordinary Least Squares Model Based on Fouriertransform Infrared Spectroscopy. J. Oil Palm Res. 2020;33:514–523. doi: 10.21894/jopr.2020.0106. DOI
Prakoso F.A.H., Indiarto R., Utama G.L. Edible Film Casting Techniques and Materials and Their Utilization for Meat-Based Product Packaging. Polymers. 2023;15:2800. doi: 10.3390/polym15132800. PubMed DOI PMC
Douny C., Tihon A., Bayonnet P., Brose F., Degand G., Rozet E., Milet J., Ribonnet L., Lambin L., Larondelle Y., et al. Validation of the Analytical Procedure for the Determination of Malondialdehyde and Three Other Aldehydes in Vegetable Oil Using Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) and Application to Linseed Oil. Food Anal. Methods. 2015;8:1425–1435. doi: 10.1007/s12161-014-0028-z. DOI
Ma L., Liu G. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-Hexenal, and 4-Hydroxy-2-Nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography. J. Agric. Food Chem. 2017;65:11320–11328. doi: 10.1021/acs.jafc.7b04566. PubMed DOI
Custodio-Mendoza J.A., Valente I.M., Ramos R.M., Lorenzo R.A., Carro A.M., Rodrigues J.A. Analysis of Free Malondialdehyde in Edible Oils Using Gas-Diffusion Microextraction. J. Food Compos. Anal. 2019;82:103254. doi: 10.1016/j.jfca.2019.103254. DOI
Papastergiadis A., Fatouh A., Jacxsens L., Lachat C., Shrestha K., Daelman J., Kolsteren P., Van Langenhove H., De Meulenaer B. Exposure Assessment of Malondialdehyde, 4-Hydroxy-2-(E)-Nonenal and 4-Hydroxy-2-(E)-Hexenal through Specific Foods Available in Belgium. Food Chem. Toxicol. 2014;73:51–58. doi: 10.1016/j.fct.2014.06.030. PubMed DOI
Cong S., Dong W., Zhao J., Hu R., Long Y., Chi X. Characterization of the Lipid Oxidation Process of Robusta Green Coffee Beans and Shelf Life Prediction during Accelerated Storage. Molecules. 2020;25:1157. doi: 10.3390/molecules25051157. PubMed DOI PMC
Viau M., Genot C., Ribourg L., Meynier A. Amounts of the reactive aldehydes, malonaldehyde, 4-hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in fresh and oxidized edible oils do not necessary reflect their peroxide and anisidine values. Eur. J. Lipid Sci. Tech. 2016;118:435–444. doi: 10.1002/ejlt.201500103. DOI
Bouyanfif A., Liyanage S., Hequet E., Moustaid-Moussa N., Abidi N. FTIR Microspectroscopy Reveals Fatty Acid-Induced Biochemical Changes in C. Elegans. Vib. Spectrosc. 2019;102:8–15. doi: 10.1016/j.vibspec.2019.03.002. DOI
Ma L., He Q., Qiu Y., Liu H., Wu J., Liu G., Brennan C., Brennan M.A., Zhu L. Food Matrixes Play a Key Role in the Distribution of Contaminants of Lipid Origin: A Case Study of Malondialdehyde Formation in Vegetable Oils during Deep-Frying. Food Chem. 2021;347:129080. doi: 10.1016/j.foodchem.2021.129080. PubMed DOI
Muangrat R., Pongsirikul I. Recovery of Spent Coffee Grounds Oil Using Supercritical CO2: Extraction Optimisation and Physicochemical Properties of Oil. CyTA—J. Food. 2019;17:334–346. doi: 10.1080/19476337.2019.1580771. DOI
Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of Oil Extracted from Spent Coffee Grounds for Sustainable Production of Polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:5883–5890. doi: 10.1007/s00253-014-5653-3. PubMed DOI
Al-Hamamre Z., Foerster S., Hartmann F., Kröger M., Kaltschmitt M. Oil Extracted from Spent Coffee Grounds as a Renewable Source for Fatty Acid Methyl Ester Manufacturing. Fuel. 2012;96:70–76. doi: 10.1016/j.fuel.2012.01.023. DOI
Lauberts M., Mierina I., Pals M., Latheef M.A.A., Shishkin A. Spent Coffee Grounds Valorization in Biorefinery Context to Obtain Valuable Products Using Different Extraction Approaches and Solvents. Plants. 2022;12:30. doi: 10.3390/plants12010030. PubMed DOI PMC
Liu Y., Kitts D.D. Confirmation That the Maillard Reaction Is the Principle Contributor to the Antioxidant Capacity of Coffee Brews. Food Res. Int. 2011;44:2418–2424. doi: 10.1016/j.foodres.2010.12.037. DOI
Nicoli M.C., Anese M., Manzocco L., Lerici C.R. Antioxidant Properties of Coffee Brews in Relation to the Roasting Degree. LWT—Food Sci. Technol. 1997;30:292–297. doi: 10.1006/fstl.1996.0181. DOI
Liao Y.-C., Kim T., Silva J.L., Hu W.-Y., Chen B.-Y. Effects of Roasting Degrees on Phenolic Compounds and Antioxidant Activity in Coffee Beans from Different Geographic Origins. LWT. 2022;168:113965. doi: 10.1016/j.lwt.2022.113965. DOI
Opitz S.E.W., Goodman B.A., Keller M., Smrke S., Wellinger M., Schenker S., Yeretzian C. Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling On-Line ABTS Assay to High Performance Size Exclusion Chromatography: Analysis of Coffee Antioxidants Using ABTS-HPSEC On-Line Assay. Phytochem. Anal. 2017;28:106–114. doi: 10.1002/pca.2661. PubMed DOI PMC
Andrade C., Perestrelo R., Câmara J.S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules. 2022;27:7504. doi: 10.3390/molecules27217504. PubMed DOI PMC
Choi B., Koh E. Spent Coffee as a Rich Source of Antioxidative Compounds. Food Sci. Biotechnol. 2017;26:921–927. doi: 10.1007/s10068-017-0144-9. PubMed DOI PMC
Sharma A., Ray A., Singhal R.S. A Biorefinery Approach towards Valorization of Spent Coffee Ground: Extraction of the Oil by Supercritical Carbon Dioxide and Utilizing the Defatted Spent in Formulating Functional Cookies. Future Foods. 2021;4:100090. doi: 10.1016/j.fufo.2021.100090. DOI
Dordevic D., Kushkevych I., Jancikova S., Zeljkovic S.C., Zdarsky M., Hodulova L. Modeling the Effect of Heat Treatment on Fatty Acid Composition in Home-Made Olive Oil Preparations. Open Life Sci. 2020;15:606–618. doi: 10.1515/biol-2020-0064. PubMed DOI PMC
Dordevic D., Dordevic S., Ćavar-Zeljković S., Kulawik P., Kushkevych I., Tremlová B., Kalová V. Monitoring the Quality of Fortified Cold-Pressed Rapeseed Oil in Different Storage Conditions. Eur. Food Res. Technol. 2022;248:2695–2705. doi: 10.1007/s00217-022-04079-8. DOI
Song J.L., Asare T.S., Kang M.Y., Lee S.C. Changes in Bioactive Compounds and Antioxidant Capacity of Coffee under Different Roasting Conditions. Korean J. Plant Resour. 2018;31:704–713. doi: 10.7732/KJPR.2018.31.6.704. DOI
Alonso-Salces R.M., Serra F., Reniero F., HÉberger K. Botanical and Geographical Characterization of Green Coffee (Coffea Arabica and Coffea Canephora): Chemometric Evaluation of Phenolic and Methylxanthine Contents. J. Agric. Food Chem. 2009;57:4224–4235. doi: 10.1021/jf8037117. PubMed DOI
Mannino G., Kunz R., Maffei M.E. Discrimination of Green Coffee (Coffea Arabica and Coffea Canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting. Antioxidants. 2023;12:1135. doi: 10.3390/antiox12051135. PubMed DOI PMC
Dias R., Benassi M. Discrimination between Arabica and Robusta Coffees Using Hydrosoluble Compounds: Is the Efficiency of the Parameters Dependent on the Roast Degree? Beverages. 2015;1:127–139. doi: 10.3390/beverages1030127. DOI
Rocha De Souza M.C., Marques C.T., Guerra Dore C.M., Ferreira Da Silva F.R., Oliveira Rocha H.A., Leite E.L. Antioxidant Activities of Sulfated Polysaccharides from Brown and Red Seaweeds. J. Appl. Phycol. 2007;19:153–160. doi: 10.1007/s10811-006-9121-z. PubMed DOI PMC
Lombo Vidal O., Tsukui A., Garrett R., Miguez Rocha-Leão M.H., Piler Carvalho C.W., Pereira Freitas S., Moraes De Rezende C., Simões Larraz Ferreira M. Production of Bioactive Films of Carboxymethyl Cellulose Enriched with Green Coffee Oil and Its Residues. Int. J. Biol. Macromol. 2020;146:730–738. doi: 10.1016/j.ijbiomac.2019.10.123. PubMed DOI
Dordevic D., Dordevic S., Abdullah F.A.A., Mader T., Medimorec N., Tremlova B., Kushkevych I. Edible/Biodegradable Packaging with the Addition of Spent Coffee Grounds Oil. Foods. 2023;12:2626. doi: 10.3390/foods12132626. PubMed DOI PMC
Balasubramanian R., Kim S.S., Lee J. Novel Synergistic Transparent K-Carrageenan/Xanthan Gum/Gellan Gum Hydrogel Film: Mechanical, Thermal and Water Barrier Properties. Int. J. Biol. Macromol. 2018;118:561–568. doi: 10.1016/j.ijbiomac.2018.06.110. PubMed DOI
Balaban P., Puška A. Influence of Packaging Process on Mechanical Characteristics of the Flexible Packaging Materials. Adeletters. 2022;1:65–70. doi: 10.46793/adeletters.2022.1.2.5. DOI
Kong I., Degraeve P., Pui L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation—A Review. Foods. 2022;11:555. doi: 10.3390/foods11040555. PubMed DOI PMC
Shah Y.A., Bhatia S., Al-Harrasi A., Afzaal M., Saeed F., Anwer M.K., Khan M.R., Jawad M., Akram N., Faisal Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers. 2023;15:1724. doi: 10.3390/polym15071724. PubMed DOI PMC
Holm V.K., Ndoni S., Risbo J. The Stability of Poly(Lactic Acid) Packaging Films as Influenced by Humidity and Temperature. J. Food Sci. 2006;71:E40–E44. doi: 10.1111/j.1365-2621.2006.tb08895.x. DOI
Sandhu K.S., Sharma L., Kaur M., Kaur R. Physical, Structural and Thermal Properties of Composite Edible Films Prepared from Pearl Millet Starch and Carrageenan Gum: Process Optimization Using Response Surface Methodology. Int. J. Biol. Macromol. 2020;143:704–713. doi: 10.1016/j.ijbiomac.2019.09.111. PubMed DOI
Bomfim A., Oliveira D., Voorwald H., Benini K., Dumont M.-J., Rodrigue D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers. 2022;14:437. doi: 10.3390/polym14030437. PubMed DOI PMC
Yan J., Yu H., Yang Z., Li L., Qin Y., Chen H. Development of Smart Films of a Chitosan Base and Robusta Coffee Peel Extract for Monitoring the Fermentation Process of Pickles. Foods. 2023;12:2337. doi: 10.3390/foods12122337. PubMed DOI PMC
Tarique J., Sapuan S.M., Khalina A. Effect of Glycerol Plasticizer Loading on the Physical, Mechanical, Thermal, and Barrier Properties of Arrowroot (Maranta Arundinacea) Starch Biopolymers. Sci. Rep. 2021;11:13900. doi: 10.1038/s41598-021-93094-y. PubMed DOI PMC
Farhan A., Hani N.M. Characterization of Edible Packaging Films Based on Semi-Refined Kappa-Carrageenan Plasticized with Glycerol and Sorbitol. Food Hydrocoll. 2017;64:48–58. doi: 10.1016/j.foodhyd.2016.10.034. DOI
Martiny T.R., Pacheco B.S., Pereira C.M.P., Mansilla A., Astorga–España M.S., Dotto G.L., Moraes C.C., Rosa G.S. A Novel Biodegradable Film Based on Κ-carrageenan Activated with Olive Leaves Extract. Food Sci. Nutr. 2020;8:3147–3156. doi: 10.1002/fsn3.1554. PubMed DOI PMC
Apriliyani M.W., Purwadi P., Manab A., Apriliyanti M.W., Ikhwan A.D. Characteristics of Moisture Content, Swelling, Opacity and Transparency with Addition Chitosan as Edible Films/Coating Base on Casein. Adv. J. Food Sci. Technol. 2020;18:9–14. doi: 10.19026/ajfst.18.6041. DOI
Abdillah A.A., Charles A.L. Characterization of a Natural Biodegradable Edible Film Obtained from Arrowroot Starch and Iota-Carrageenan and Application in Food Packaging. Int. J. Biol. Macromol. 2021;191:618–626. doi: 10.1016/j.ijbiomac.2021.09.141. PubMed DOI
Travalini A.P., Lamsal B., Magalhães W.L.E., Demiate I.M. Cassava Starch Films Reinforced with Lignocellulose Nanofibers from Cassava Bagasse. Int. J. Biol. Macromol. 2019;139:1151–1161. doi: 10.1016/j.ijbiomac.2019.08.115. PubMed DOI
Nguyen B.T., Nicolai T., Benyahia L., Chassenieux C. Synergistic Effects of Mixed Salt on the Gelation of κ-Carrageenan. Carbohydr. Polym. 2014;112:10–15. doi: 10.1016/j.carbpol.2014.05.048. PubMed DOI
Thakur R., Pristijono P., Golding J.B., Stathopoulos C.E., Scarlett C.J., Bowyer M., Singh S.P., Vuong Q.V. Amylose-Lipid Complex as a Measure of Variations in Physical, Mechanical and Barrier Attributes of Rice Starch- ι -Carrageenan Biodegradable Edible Film. Food Packag. Shelf Life. 2017;14:108–115. doi: 10.1016/j.fpsl.2017.10.002. DOI
Silva M.A.D., Bierhalz A.C.K., Kieckbusch T.G. Alginate and Pectin Composite Films Crosslinked with Ca2+ Ions: Effect of the Plasticizer Concentration. Carbohydr. Polym. 2009;77:736–742. doi: 10.1016/j.carbpol.2009.02.014. DOI
Wahyuni S., Holilah, Asranudin, Rianse M.I.K., Sadimantara M.S. Effect of κ-Carrageenan Concentration on Physical and Mechanical Properties of Vegetable Leather Based on Kelor Leaves (Moringa Oleifera L.) IOP Conf. Ser. Earth Environ. Sci. 2019;260:012180. doi: 10.1088/1755-1315/260/1/012180. DOI