Edible Films from Carrageenan/Orange Essential Oil/Trehalose-Structure, Optical Properties, and Antimicrobial Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
229/2020/FVHE
Internal grant agency University of Veterinary and Pharmaceutical Sciences Brno
PubMed
33494246
PubMed Central
PMC7864528
DOI
10.3390/polym13030332
PII: polym13030332
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, edible packaging, orange essential oil, transparency value, trehalose,
- Publikační typ
- časopisecké články MeSH
The research aim was to use orange essential oil and trehalose in a carrageenan matrix to form edible packaging. The edible packaging experimentally produced by casting from an aqueous solution were evaluated by the following analysis: UV-Vis spectrum, transparency value, transmittance, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), scanning electron microscopy (SEM) and antimicrobial activity. The obtained results showed that the combination of orange essential oil with trehalose decreases the transmittance value in the UV and Vis regions (up to 0.14% ± 0.02% at 356 nm), meaning that produced films can act as a UV protector. Most produced films in the research were resistant to Gram-positive bacteria (Staphylococcus aureus subsp. aureus), though most films did not show antibacterial properties against Gram-negative bacteria and yeasts. FTIR and SEM confirmed that both the amount of carrageenan used and the combination with orange essential oil influenced the compatibility of trehalose with the film matrix. The research showed how different combinations of trehalose, orange essential oils and carrageenan can affect edible film properties. These changes represent important information for further research and the possible practical application of these edible matrices.
Zobrazit více v PubMed
Lee D.S., Yam K.L., Piergiovanni L. Food Packaging Science and Technology. CRC Press; Boca Raton, FL, USA: 2008.
Ramos Ó.L., Reinas I., Silva S.I., Fernandes J.C., Cerqueira M.A., Pereira R.N., Vicente A.A., Poças M.F., Pintado M.E., Malcata F.X. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013;30:110–122. doi: 10.1016/j.foodhyd.2012.05.001. DOI
Ramos M., Valdes A., Beltran A., Garrigós M.C. Gelatin-based films and coatings for food packaging applications. Coatings. 2016;6:41. doi: 10.3390/coatings6040041. DOI
Wang Z., Tang L., Lin F., Shen Y., Chen Y., Chen X., Huang B., Lu B. Multi-Functional Edible Film with Excellent UV Barrier Performance and Accurate Instant Ion Printing Capability. Adv. Sustain. Syst. 2020;4:1–10. doi: 10.1002/adsu.202000043. DOI
Farajpour R., Djomeh Z.E., Moeini S., Tavahkolipour H., Safayan S. Structural and physico-mechanical properties of po-tato starch-olive oil edible films reinforced with zein nanoparticles. Int. J. Biol. Macromol. 2020;149:941–950. doi: 10.1016/j.ijbiomac.2020.01.175. PubMed DOI
Bourtoom T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008;15:237–248.
Albanese D., Cinquanta L., Di Matteo M. Effects of an innovative dipping treatment on the cold storage of minimally processed Annurca apples. Food Chem. 2007;105:1054–1060. doi: 10.1016/j.foodchem.2007.05.009. DOI
Yildiz F., Wiley R.C. Minimally Processed Refrigerated Fruits and Vegetables. Springer; New York, NY, USA: 2017.
Ayhan Z. Agents of Change. Volume 89. Springer; New York, NY, USA: 2017. Packaging and Preservation Methods of Minimally Processed Produce; pp. 239–268.
Richards A., Krakowka S., Dexter L., Schmid H., Wolterbeek A., Waalkens-Berendsen D., Shigoyuki A., Kurimoto M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 2002;40:871–898. doi: 10.1016/S0278-6915(02)00011-X. PubMed DOI
Liu T., Zhu L., Zhang Z., Huang H., Zhang Z., Jiang L. Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Sci. Rep. 2017;7:17586. doi: 10.1038/s41598-017-15489-0. PubMed DOI PMC
Lv F., Liang H., Yuan Q., Li C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil com-binations against four food-related microorganisms. Food Res. Int. 2011;44:3057–3064. doi: 10.1016/j.foodres.2011.07.030. DOI
Maisanaba S., Llana-Ruiz-Cabello M., Gutiérrez-Praena D., Pichardo S., Puerto M., Prieto A.I., Cameán A.M. New ad-vances in active packaging incorporated with essential oils or their main components for food preservation. Food Rev. Int. 2017;33:447–515. doi: 10.1080/87559129.2016.1175010. DOI
Pelissari F.M., Grossmann M.V., Yamashita F., Pineda E.A.G. Antimicrobial, mechanical, and barrier properties of cas-sava starch− chitosan films incorporated with oregano essential oil. J. Agric. Food Chem. 2009;57:7499–7504. doi: 10.1021/jf9002363. PubMed DOI
Sánchez-González L., Vargas M., González-Martínez C., Chiralt A., Cháfer M. Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Eng. Rev. 2011;3:1–16. doi: 10.1007/s12393-010-9031-3. DOI
Kaur C.D., Saraf S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacogn. Res. 2010;2:22–25. PubMed PMC
Frassinetti S., Caltavuturo L., Cini M., Della Croce C.M., Maserti B.E. Antibacterial and antioxidant activity of essential oils from Citrus spp. J. Essent. Oil Res. 2011;23:27–31. doi: 10.1080/10412905.2011.9700427. DOI
Sabo B., Bečica T., Keleš N., Kovačević D., Brozović M. The impact of packaging transparency on product attractiveness. J. Graph. Eng. Des. 2017;8:5. doi: 10.24867/JGED-2017-2-005. DOI
Cagri A., Ustunol Z., Ryser E.T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004;67:833–848. doi: 10.4315/0362-028X-67.4.833. PubMed DOI
Escamilla-García M., Calderón-Domínguez G., Chanona-Pérez J.J., Mendoza-Madrigal A.G., Di Pierro P., García-Almendárez B.E., Amaro-Reyes A., Regalado-González C. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils. Int. J. Mol. Sci. 2017;18:2370. doi: 10.3390/ijms18112370. PubMed DOI PMC
Siracusa V., Romani S., Gigli M., Mannozzi C., Cecchini J.P., Tylewicz U., Lotti N. Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials. 2018;11:1980. doi: 10.3390/ma11101980. PubMed DOI PMC
Du W.X., Avena-Bustillos R.J., Hua S.S.T., McHugh T.H. Antimicrobial volatile essential oils in edible films for food safety. Sci. Against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 2011;2:1124–1134.
Han J.H., Floros J.D. Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. J. Plast. Film Sheeting. 1997;13:287–298. doi: 10.1177/875608799701300405. DOI
Shankar S., Rhim J.W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultravio-let light barrier and antibacterial properties. Food Hydrocoll. 2017;71:76–84. doi: 10.1016/j.foodhyd.2017.05.002. DOI
Ahmed J., Arfat Y.A., Al-Attar H., Auras R., Ejaz M. Rheological, structural, ultraviolet protection and oxygen barrier properties of linear low- density polyethylene films reinforced with zinc oxide (ZnO) nanoparticles. Food Packag. Shelf Life. 2017;13:20–26. doi: 10.1016/j.fpsl.2017.04.005. DOI
Jancikova S., Dordevic D., Jamroz E., Behalova H., Tremlova B. Chemical and Physical Characteristics of Edible Films, Based on κ- and ι-Carrageenans with the Addition of Lapacho Tea Extract. Foods. 2020;9:357. doi: 10.3390/foods9030357. PubMed DOI PMC
Wu J., Sun X., Guo X., Ge S., Zhang Q. Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac. Fish. 2017;2:185–192. doi: 10.1016/j.aaf.2017.06.004. DOI
Ploypetchara T., Gohtani S. Characteristics of rice starch film blended with sugar (trehalose/allose) and oil (canola oil/coconut oil): Part I—Filmogenic solution behavior and mechanical properties. J. Food Sci. 2020;85:3372–3379. doi: 10.1111/1750-3841.15455. PubMed DOI
Haghighi H., Biard S., Bigi F., De Leo R., Bedin E., Pfeifer F., Siesler H.W., Licciardello F., Pulvirenti A. Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils. Food Hydrocoll. 2019;95:33–42. doi: 10.1016/j.foodhyd.2019.04.019. DOI
Liu Y., Qin Y., Bai R., Zhang X., Yuan L., Liu J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. Int. J. Biol. Macromol. 2019;134:993–1001. doi: 10.1016/j.ijbiomac.2019.05.175. PubMed DOI
Zavala J.A., Ravetta D.A. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant. Ecol. 2002;161:185–191. doi: 10.1023/A:1020314706567. DOI
Bekbölet M. Light Effects on Food. J. Food Prot. 1990;53:430–440. doi: 10.4315/0362-028X-53.5.430. PubMed DOI
Forney L.J., Moraru C.I. Ultraviolet Light in Food Technology: Principles and Applications. CRC Press; Boca Raton, FL, USA: 2009.
El-Tinay A.H., Chichester C.O. Oxidation of beta-carotene. Site of initial attack. J. Org. Chem. 1970;35:2290–2293. doi: 10.1021/jo00832a040. PubMed DOI
Rincón E., Serrano L., Balu A.M., Aguilar J.J., Luque R., García A. Balu Effect of Bay Leaves Essential Oil Concentration on the Properties of Biodegradable Carboxymethyl Cellulose-Based Edible Films. Materials. 2019;12:2356. doi: 10.3390/ma12152356. PubMed DOI PMC
Nowicki M., Richter A., Wolf B., Kaczmarek H. Nanoscale mechanical properties of polymers irradiated by UV. Polymer. 2003;44:6599–6606. doi: 10.1016/S0032-3861(03)00729-8. DOI
Diepens M., Gijsman P. Photodegradation of bisphenol A polycarbonate. Polym. Degrad. Stab. 2007;92:397–406. doi: 10.1016/j.polymdegradstab.2006.12.003. DOI
Yousif E., Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus. 2013;2:1–32. doi: 10.1186/2193-1801-2-398. PubMed DOI PMC
Nor M.H.M., Nazmi N.N.M., Sarbon N.M. Effects of plasticizer concentrations on functional properties of chicken skin gelatin films. Int. Food Res. J. 2017;24:1910–1918.
Šuput D., Lazić V., Pezo L., Markov S., Vaštag Ž., Popović L., Radulović A., Ostojić S., Zlatanović S., Popović S. Charac-terization of starch edible films with different essential oils addition. Pol. J. Food Nutr. Sci. 2016;66:277–286. doi: 10.1515/pjfns-2016-0008. DOI
Shojaee-Aliabadi S., Hosseini H., Mohammadifar M.A., Mohammadi A., Ghasemlou M., Ojagh S.M., Hosseini S.M., Khaksar R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2013;52:116–124. doi: 10.1016/j.ijbiomac.2012.08.026. PubMed DOI
Gómez-Guillén M.D.C., Ihl M., Bifani V., Silva A., Montero P. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz) Food Hydrocoll. 2007;21:1133–1143. doi: 10.1016/j.foodhyd.2006.08.006. DOI
Edhirej A., Sapuan S.M., Jawaid M., Zahari N.I. Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch Stärke. 2016;69:1500366. doi: 10.1002/star.201500366. DOI
Ortiz-Tafoya M., Tecante A. Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan. Data Brief. 2018;19:642–650. doi: 10.1016/j.dib.2018.05.064. PubMed DOI PMC
Sussich F., Urbani R., Princivalle F., Cesàro A. Polymorphic Amorphous and Crystalline Forms of Trehalose. J. Am. Chem. Soc. 1998;120:7893–7899. doi: 10.1021/ja9800479. DOI
Akao K.-I., Okubo Y., Asakawa N., Inoue Y., Sakurai M. Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer. Carbohydr. Res. 2001;334:233–241. doi: 10.1016/S0008-6215(01)00182-3. PubMed DOI
Cooper J.M., Tian W.U.S. Edible Compositions Containing Trehalose. 6,620,791. U.S. Patent. 2003 Sep 16;
Pérez L., Piccirilli G., Delorenzi N.J., Verdini R. Effect of different combinations of glycerol and/or trehalose on physical and structural properties of whey protein concentrate-based edible films. Food Hydrocoll. 2016;56:352–359. doi: 10.1016/j.foodhyd.2015.12.037. DOI
Aldous B.J., Auffret A.D., Franks F. The crystallisation of hydrates from amorphous carbohydrates) Cryoletters. 1995;16:181–186.
Elbein A.D., Pan Y., Pastuszak I., Carroll D. New insights on trehalose: A multifunctional molecule. Glycobiology. 2003;13:17–27. doi: 10.1093/glycob/cwg047. PubMed DOI