Adhesion Improvement between PE and PA in Multilayer Rotational Molding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33494259
PubMed Central
PMC7864506
DOI
10.3390/polym13030331
PII: polym13030331
Knihovny.cz E-zdroje
- Klíčová slova
- adhesion, multilayer rotational molding, plasma treatment, polyamide, polyethylene,
- Publikační typ
- časopisecké články MeSH
The aim of this study is to investigate a multilayer structure made of polyethylene and polyamide by rotational molding. Due to the different polarity of these polymers, it is difficult to ensure enough adhesion between created layers. Two methods leading to improve adhesion are introduced. Plasma modification of polyethylene powder, after which new functional groups are bound to the treated surface, may enhance specific adhesion by forming hydrogen bonds with-CONH groups of polyamide. Different strategies of adding material to the mold give rise to complicated interlayer which increases joint strength by mechanism of the mechanical adhesion. Mechanical tests show a significant improvement of joint strength, where treated samples reached two-fold values of peel strength (7.657 ± 1.024 N∙mm-1) against the untreated sample (3.662 ± 0.430 N∙mm-1). During bending test, delamination occurred only in samples that were made of the untreated polyethylene. Adding polyamide during the melting stage of polyethylene powder in rotomolding resulted in the formation of entanglements which improve the peel strength almost eight times in comparison with the sample where the polyethylene was left to completely melt and create smooth interlayer surface.
Zobrazit více v PubMed
Beall G. Rotational Molding: Design, Materials, Tooling, and Processing. Hanser/Gardner Publications; Munich, Germany: Cincinnati, OH, USA: 1998.
Crawford R.J., Throne J.L. Rotational Molding Technology. Plastics Design Library/William Andrew Publications; Norwich, NY, USA: 2002.
Crawford R.J., Kearns M.P. Practical Guide to Rotational Moulding. 2nd ed. Smithers Rapra Technology; Shropshire, UK: 2012.
Kutz M. Applied Plastics Engineering Handbook: Processing, Materials, and Applications. Elsevier; Boston, MA, USA: 2016.
Chang W.C., Harkin-Jones E., Kearns M., McCourt M. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding. AIP Conf. Proc. 2011;1353:708–713. doi: 10.1063/1.3589598. DOI
López-Bañuelos R.H., Moscoso F.J., Ortega-Gudiño P., Mendizabal E., Rodrigue D., González-Núñez R. Rotational Molding of Polyethylene Composites Based on Agave Fibers. Polym. Eng. Sci. 2012;52:2489–2497. doi: 10.1002/pen.23168. DOI
Ortega Z., Monzón M.D., Benítez A.N., Kearns M., McCourt M., Hornsby P.R. Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process. Mater. Manuf. Process. 2013;28:879–883. doi: 10.1080/10426914.2013.792431. DOI
Hanana F.E., Chimeni D.Y., Rodrigue D. Morphology and Mechanical Properties of Maple Reinforced LLDPE Produced by Rotational Moulding: Effect of Fibre Content and Surface Treatment. Polym. Polym. Compos. 2018;26:299–308. doi: 10.1177/096739111802600404. DOI
Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of Plasma Modification of Polyethylene on Natural Fibre Composites Prepared via Rotational Moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI
Andrzejewski J., Krawczak A., Wesoły K., Szostak M. Rotational Molding of Biocomposites with Addition of Buckwheat Husk Filler. Structure-Property Correlation Assessment for Materials Based on Polyethylene (PE) and Poly(Lactic Acid) PLA. Compos. Part B Eng. 2020;202:108410. doi: 10.1016/j.compositesb.2020.108410. DOI
Flaconnèche B., Martin J., Klopffer M. Permeability, Diffusion and Solubility of Gases in Polyethylene, Polyamide 11 and Poly (Vinylidene Fluoride) Oil Gas Sci. Technol. 2001;56:261–278. doi: 10.2516/ogst:2001023. DOI
Spence A.G., Knepper J.R., Grimes D.D., Centro Inc. Multi-Layer Rotationally Molded Low Permeation Vessels and Method for Manufacture Thereof. No. 8,911,842,B2. U.S. Patent. 2014 Dec 16;
Liu S.-J., Yang C.-H. Rotational Molding of Two-Layered Polyethylene Foams. Adv. Polym. Technol. 2001;20:108–115. doi: 10.1002/adv.1008. DOI
Jansri E., O-Charoen N. Polypropylene/Polyethylene Two-Layered by One-Step Rotational Molding. J. Polym. Eng. 2018;38:685–694. doi: 10.1515/polyeng-2017-0367. DOI
Sakaki H., Takashima E., Matsuda S., Kishi K. Polypropylene/Polyethylene Multilayer Rotational Molding. J. Adhes. Soc. Jpn. 2010;46:473–478. doi: 10.11618/adhesion.46.473. DOI
Löhner M., Drummer D. Multi-Layer Rotational Molding of PE-PA Utilizing a Multiphase Interlayer to Generate Mechanical Adhesion; Proceedings of the SPE Proceedings ANTEC 2016; Indianapolis, IN, USA. 23–25 May 2016.
Löhner M., Drummer D. Experimental Studies on the Bonding Strength and Fracture Behavior of Incompatible Materials Bonded by Mechanical Adhesion in Multilayer Rotational Molding. J. Polym. 2016;2016:1–11. doi: 10.1155/2016/5768453. DOI
Löhner M., Drummer D. Influence of Particle Size in Multi-Layer Rotational Molding with a Multiphase Interlayer to Generate Mechanical Adhesion; Proceedings of the SPE ANTEC 2017; Anaheim, CA, USA. 8–10 May 2017.
O’brien G.S., Bonnet A. Multi-Layer Rotational Moulding. WO2005115753A1. U.S. Patent. 2005 Dec 8;
Maziers E. Multilayer Rotational Moulding. E.P.1422059B1. European Patent. 2012 Apr 25;
Ebnesajjad S., Ebnesajjad C. Surface Treatment of Materials for Adhesive Bonding. Elsevier Science & Technology Books; Norwich, CT, USA: 2013.
Zeng H. Polymer Adhesion, Friction, and Lubrication. John Wiley & Sons, Incorporated; Somerset, MA, USA: 2013.
Tcharkhtchi A., Barcelo P., Mazabraud P., Jousse F., Kearns M.P. Study of Adhesion Between Two Layers in Multilayer Rotomolded Products. Adv. Eng. Mater. 2002;4:475–478. doi: 10.1002/1527-2648(20020717)4:7<475::AID-ADEM475>3.0.CO;2-0. DOI
Píchal J., Hladík J., Špatenka P. Atmospheric-Air Plasma Surface Modification of Polyethylene Powder: Atmospheric-Air Plasma Surface Modification of Polyethylene Powder. Plasma Process. Polym. 2009;6:148–153. doi: 10.1002/ppap.200800080. DOI
Vandencasteele N., Reniers F. Plasma-Modified Polymer Surfaces: Characterization Using XPS. J. Electron. Spectrosc. Relat. Phenom. 2010;178:394–408. doi: 10.1016/j.elspec.2009.12.003. DOI
Šourková H., Špatenka P. Plasma Activation of Polyethylene Powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC
Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface Modification of Polymers by Plasma Treatments for the Enhancement of Biocompatibility and Controlled Drug Release. Surf. Coat. Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI
Horakova M., Spatenka P., Hladik J., Hornik J., Steidl J., Polachova A. Investigation of Adhesion Between Metal and Plasma-Modified Polyethylene: Investigation of Adhesion Between Metal and Plasma-Modified Polyethylene. Plasma Process. Polym. 2011;8:983–988. doi: 10.1002/ppap.201100045. DOI
Arpagaus C., Oberbossel G., Rudolf von Rohr P. Plasma Treatment of Polymer Powders—From Laboratory Research to Industrial Application. Plasma Process. Polym. 2018;15:1800133. doi: 10.1002/ppap.201800133. DOI
Xie J., Xin D., Cao H., Wang C., Zhao Y., Yao L., Ji F., Qiu Y. Improving Carbon Fiber Adhesion to Polyimide with Atmospheric Pressure Plasma Treatment. Surf. Coat. Technol. 2011;206:191–201. doi: 10.1016/j.surfcoat.2011.04.016. DOI
Liu Z., Tang C., Chen P., Yu Q., Li W. Modification of Carbon Fiber by Air Plasma and Its Adhesion with BMI Resin. RSC Adv. 2014;4:26881. doi: 10.1039/c4ra01835d. DOI
Enciso B., Abenojar J., Martínez M.A. Influence of Plasma Treatment on the Adhesion between a Polymeric Matrix and Natural Fibres. Cellulose. 2017;24:1791–1801. doi: 10.1007/s10570-017-1209-x. DOI
Fazeli M., Florez J.P., Simão R.A. Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification. Compos. Part B Eng. 2019;163:207–216. doi: 10.1016/j.compositesb.2018.11.048. DOI
Haji A., Hadizadeh M., Ferasat E., Movaghatian D. Effect of Plasma Treatment on Glass Fiber/Epoxy Resin Composite. [(accessed on 20 November 2020)];2019 Available online: https://www.researchgate.net/profile/Aminoddin_Haji/publication/332547684_EFFECT_OF_PLASMA_TREATMENT_ON_GLASS_FIBEREPOXY_RESIN_COMPOSITE/links/5cbc0b07a6fdcc1d49a3e6cc/EFFECT-OF-PLASMA-TREATMENT-ON-GLASS-FIBER-EPOXY-RESIN-COMPOSITE.pdf.
Novacek V., Vackova T., Spatenka P., Jenikova Z. Application of Low Temperature Plasma Treatment for Thermoplastic Composites; Proceedings of the 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP); Brasov, Romania. 25–27 May 2017; pp. 1027–1032.
Weberová Z. Low-Pressure Cold Plasma Surface Treatment for Adhesion Improvement in Composite Structures; Proceedings of the SVC Annual Technical Conference Proceedings; Long Beach, CA, USA. 27 April–2 May 2019.
Oliveira M.J., Cramez M.C., Garcia C.B., Kearns M.P., Maziers E. Effect of the Processing Conditions on the Microstructure and Properties of Rotational Molded Polyamide 11. J. Appl. Polym. Sci. 2008;108:939–946. doi: 10.1002/app.27344. DOI
Noeske M., Degenhardt J., Strudthoff S., Lommatzsch U. Plasma Jet Treatment of Five Polymers at Atmospheric Pressure: Surface Modifications and the Relevance for Adhesion. Int. J. Adhes. Adhes. 2004;24:171–177. doi: 10.1016/j.ijadhadh.2003.09.006. DOI
Fombuena V., Balart R., Sánchez-Nácher L., Fenollar O., España J.M. Atmospheric Plasma Treatment of Polyethylene Substrates for Improved Mechanical Performance of Adhesion Joints. Bull. Transilv. Univ. Brasov. Eng. Sci. 2011;4:8.
Mandolfino C., Lertora E., Gambaro C. Influence of Cold Plasma Treatment Parameters on the Mechanical Properties of Polyamide Homogeneous Bonded Joints. Surf. Coat. Technol. 2017;313:222–229. doi: 10.1016/j.surfcoat.2017.01.071. DOI
Károly Z., Kalácska G., Zsidai L., Mohai M., Klébert S. Improvement of Adhesion Properties of Polyamide 6 and Polyoxymethylene-Copolymer by Atmospheric Cold Plasma Treatment. Polymers. 2018;10:1380. doi: 10.3390/polym10121380. PubMed DOI PMC
Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Gao C. Modification of Surface Properties of Polypropylene (PP) Film Using DC Glow Discharge Air Plasma. Appl. Surf. Sci. 2009;255:3965–3971. doi: 10.1016/j.apsusc.2008.10.090. DOI
Gao Z., Sun J., Peng S., Yao L., Qiu Y. Surface Modification of a Polyamide 6 Film by He/CF4 Plasma Using Atmospheric Pressure Plasma Jet. Appl. Surf. Sci. 2009;256:1496–1501. doi: 10.1016/j.apsusc.2009.09.010. DOI
Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Yoganand P., Balasubramanian S., Maruthamuthu S. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties. Plasma Sci. Technol. 2013;15:56–63. doi: 10.1088/1009-0630/15/1/10. DOI
Palaskar S.S., Kale R.D., Deshmukh R.R. Application of Atmospheric Pressure Plasma for Adhesion Improvement in Polyurethane Coating on Polypropylene Fabrics. J. Coat. Technol. Res. 2020;17:485–501. doi: 10.1007/s11998-019-00300-8. DOI
Song J., Bringuier A., Kobayashi S., Baker A.M., Macosko C.W. Adhesion between Polyethylenes and Different Types of Polypropylenes. Polym. J. 2012;44:939–945. doi: 10.1038/pj.2012.25. DOI
Williams T.S., Yu H., Hicks R.F. Atmospheric Pressure Plasma Activation of Polymers and Composites for Adhesive Bonding. Rev. Adhes. Adhes. 2013;1:46–87. doi: 10.7569/RAA.2013.097302. DOI
Löhner M., Drummer D. Characterization of Layer Built-up and Inter-Layer Boundaries in Rotational Molding of Multi-Material Parts in Dependency of the Filling Strategy. J. Polym. Eng. 2017;37:411–420. doi: 10.1515/polyeng-2016-0175. DOI