Experimental Studies on the Influence of Plasma Treatment of Polyethylene in Carbon Fiber Composites: Mechanical and Morphological Studies
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.2.69/0.0/0.0/16_027/0008465
European Social Fund Project," International Mobility of Researchers in CTU"
project No. FV40315
Ministry of Industry and Trade of the Czech Republic
PubMed
35335426
PubMed Central
PMC8949937
DOI
10.3390/polym14061095
PII: polym14061095
Knihovny.cz E-resources
- Keywords
- carbon fiber, mechanical properties, plasma treatment, polyethylene,
- Publication type
- Journal Article MeSH
This research focused on enhancement of mechanical properties in carbon fiber (CF)-filler-reinforced linear low-density polyethylene (PE) matrix composites. A hand layup method using an oven was used as the fabrication method. Improvement in adhesion was achieved by oxygen plasma treatment to the PE matrix. CF and PE were initially mixed by normal stirring, ultrasonication and mechanical stirring before being filtered and dried for fabrication. Better tensile results were observed with a plasma-treated polyethylene (PEP)/10 wt.% CF combination, with a maximum tensile strength of 21.5 MPa and improvement in the properties of up to 12.57% compared to non-plasma PE with the same CF addition. The addition of carbon fibers at 13 and 15 wt.% resulted in a reduction in the tensile strength properties to 18.2 MPa and 17.7 MPa, respectively. This reduction in tensile strength was due to agglomeration of CF with plasma- and non-plasma-treated PE. The fabrication condition of 180 °C temperature for 20 min showed better tensile properties than other conditions. The SEM results following tensile testing revealed enhanced CF filler adherence with plasma PE results, as well as fewer surface deformations. A higher flexural strength of 25.87 MPa was observed for the plasma treated PE/7 wt.% CF combination.
See more in PubMed
Khanam P.N., AlMaadeed M.A.A. Processing and characterization of polyethylene-based composites. Adv. Manuf. Polym. Compos. Sci. 2015;1:63–79. doi: 10.1179/2055035915Y.0000000002. DOI
Jin S.Y., Manuel J., Zhao X., Park W.H., Ahn J.H. Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 2017;45:15–21. doi: 10.1016/j.jiec.2016.08.021. DOI
Šourková H., Špatenka P. Plasma activation of polyethylene powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC
Van Deynse A., Cools P., Leys C., Morent R., De Geyter N. Surface modification of polyethylene in an argon atmospheric pressure plasma jet. Surf. Coat. Technol. 2015;276:384–390. doi: 10.1016/j.surfcoat.2015.06.041. DOI
Lommatzsch U., Pasedag D., Baalmann A., Ellinghorst G., Wagner H.E. Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement. Plasma Process. Polym. 2007;4:1041–1045. doi: 10.1002/ppap.200732402. DOI
Drnovská H., Lapčík L., Buršíková V., Zemek J., Barros-Timmons A.M. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003;281:1025–1033. doi: 10.1007/s00396-003-0871-8. DOI
Weberová Z., Šourková H., Antoň J., Vacková T., Špatenka P. New method for optimization of polymer powder plasma treatment for composite materials. Polymers. 2021;13:965. doi: 10.3390/polym13060965. PubMed DOI PMC
Sezemsky J., Špatenka P. Adhesion Improvement between PE and PA in Multilayer Rotational Molding. Polymers. 2021;13:331. doi: 10.3390/polym13030331. PubMed DOI PMC
Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI
Ghanem Z., Sasidharan S.P., Jenikova Z., Špatenka P. Rotational molding of plasma treated polyethylene/short glass fiber composites. Int. J. Eng. Manag. Sci. 2019;4:103–108. doi: 10.21791/IJEMS.2019.4.11. DOI
Ali Z., Gao Y., Tang B., Wu X., Wang Y., Li M., Hou X., Li L., Jiang N., Yu J. Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management applications. Polymers. 2021;13:169. doi: 10.3390/polym13010169. PubMed DOI PMC
Yao S.S., Jin F.L., Rhee K.Y., Hui D., Park S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018;142:241–250. doi: 10.1016/j.compositesb.2017.12.007. DOI
Hsieh C.T., Pan Y.J., Lin J.H. Polypropylene/high-density polyethylene/carbon fiber composites: Manufacturing techniques, mechanical properties, and electromagnetic interference shielding effectiveness. Fibers Polym. 2017;18:155–161. doi: 10.1007/s12221-017-6371-0. DOI
Mohd Radzuan N.A., Yusuf Zakaria M., Sulong A.B., Sahari J. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Compos. Part B Eng. 2017;110:153–160. doi: 10.1016/j.compositesb.2016.11.021. DOI
Hu C., Liao X., Qin Q.H., Wang G. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers. Compos. Part A Appl. Sci. Manuf. 2019;121:149–156. doi: 10.1016/j.compositesa.2019.03.027. DOI
Van de Werken N., Reese M.S., Taha M.R., Tehrani M. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2019;119:38–47. doi: 10.1016/j.compositesa.2019.01.012. DOI
Meng F., McKechnie J., Turner T., Wong K.H., Pickering S.J. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications. Environ. Sci. Technol. 2017;51:12727–12736. doi: 10.1021/acs.est.7b04069. PubMed DOI
Holmes M. Recycled carbon fiber composites become a reality. Reinf. Plast. 2018;62:148–153. doi: 10.1016/j.repl.2017.11.012. DOI
Radjef R., Jarvis K.L., Fox B.L., McArthur S.L. Comparing the properties of commercially treated and air plasma treated carbon fibers. Surf. Coat. Technol. 2021;408:126751. doi: 10.1016/j.surfcoat.2020.126751. DOI
Liu Y., Guo Y., Zhao J., Chen X., Zhang H., Hu G., Yu X., Zhang Z. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances. Compos. Sci. Technol. 2019;177:49–56. doi: 10.1016/j.compscitech.2019.04.014. DOI
Zha J.W., Wu D.H., Yang Y., Wu Y.H., Li R.K.Y., Dang Z.M. Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv. 2017;7:11338–11344. doi: 10.1039/C6RA27367J. DOI
Li Y., Nie M., Wang Q. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation. ACS Appl. Mater. Interfaces. 2018;10:1005–1016. doi: 10.1021/acsami.7b17131. PubMed DOI
Luo Y., Xiong S.Y., Zhang F., He X.X., Lu X., Peng R.T. Preparation of conductive polylactic acid/high density polyethylene/carbon black composites with low percolation threshold by locating the carbon black at the Interface of co-continuous blends. J. Appl. Polym. Sci. 2021;138:50291. doi: 10.1002/app.50291. DOI
Cho B.G., Hwang S.H., Park M., Park J.K., Park Y.B., Chae H.G. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos. Part B Eng. 2019;160:436–445. doi: 10.1016/j.compositesb.2018.12.062. DOI
Lu C., Qiu S., Lu X., Wang J., Xiao L., Zheng T., Wang X., Zhang D. Enhancing the interfacial strength of carbon fiber/poly(ether ether ketone) hybrid composites by plasma treatments. Polymers. 2019;11:753. doi: 10.3390/polym11050753. PubMed DOI PMC
Sangnal Matt Durandhara Murthy V., Vaidya U. Improving the adhesion of glass/polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces by open air plasma treatment. Int. J. Adhes. Adhes. 2019;95:102435. doi: 10.1016/j.ijadhadh.2019.102435. DOI
Šourková H.J., Weberová Z., Antoň J., Špatenka P. Wettability and Adhesion of Polyethylene Powder Treated with Non-Equilibrium Various Gaseous Plasma in Semi-Industrial Equipment. Materials. 2022;15:686. doi: 10.3390/ma15020686. PubMed DOI PMC