• This record comes from PubMed

Experimental Studies on the Influence of Plasma Treatment of Polyethylene in Carbon Fiber Composites: Mechanical and Morphological Studies

. 2022 Mar 09 ; 14 (6) : . [epub] 20220309

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.2.69/0.0/0.0/16_027/0008465 European Social Fund Project," International Mobility of Researchers in CTU"
project No. FV40315 Ministry of Industry and Trade of the Czech Republic

This research focused on enhancement of mechanical properties in carbon fiber (CF)-filler-reinforced linear low-density polyethylene (PE) matrix composites. A hand layup method using an oven was used as the fabrication method. Improvement in adhesion was achieved by oxygen plasma treatment to the PE matrix. CF and PE were initially mixed by normal stirring, ultrasonication and mechanical stirring before being filtered and dried for fabrication. Better tensile results were observed with a plasma-treated polyethylene (PEP)/10 wt.% CF combination, with a maximum tensile strength of 21.5 MPa and improvement in the properties of up to 12.57% compared to non-plasma PE with the same CF addition. The addition of carbon fibers at 13 and 15 wt.% resulted in a reduction in the tensile strength properties to 18.2 MPa and 17.7 MPa, respectively. This reduction in tensile strength was due to agglomeration of CF with plasma- and non-plasma-treated PE. The fabrication condition of 180 °C temperature for 20 min showed better tensile properties than other conditions. The SEM results following tensile testing revealed enhanced CF filler adherence with plasma PE results, as well as fewer surface deformations. A higher flexural strength of 25.87 MPa was observed for the plasma treated PE/7 wt.% CF combination.

See more in PubMed

Khanam P.N., AlMaadeed M.A.A. Processing and characterization of polyethylene-based composites. Adv. Manuf. Polym. Compos. Sci. 2015;1:63–79. doi: 10.1179/2055035915Y.0000000002. DOI

Jin S.Y., Manuel J., Zhao X., Park W.H., Ahn J.H. Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 2017;45:15–21. doi: 10.1016/j.jiec.2016.08.021. DOI

Šourková H., Špatenka P. Plasma activation of polyethylene powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC

Van Deynse A., Cools P., Leys C., Morent R., De Geyter N. Surface modification of polyethylene in an argon atmospheric pressure plasma jet. Surf. Coat. Technol. 2015;276:384–390. doi: 10.1016/j.surfcoat.2015.06.041. DOI

Lommatzsch U., Pasedag D., Baalmann A., Ellinghorst G., Wagner H.E. Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement. Plasma Process. Polym. 2007;4:1041–1045. doi: 10.1002/ppap.200732402. DOI

Drnovská H., Lapčík L., Buršíková V., Zemek J., Barros-Timmons A.M. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003;281:1025–1033. doi: 10.1007/s00396-003-0871-8. DOI

Weberová Z., Šourková H., Antoň J., Vacková T., Špatenka P. New method for optimization of polymer powder plasma treatment for composite materials. Polymers. 2021;13:965. doi: 10.3390/polym13060965. PubMed DOI PMC

Sezemsky J., Špatenka P. Adhesion Improvement between PE and PA in Multilayer Rotational Molding. Polymers. 2021;13:331. doi: 10.3390/polym13030331. PubMed DOI PMC

Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI

Ghanem Z., Sasidharan S.P., Jenikova Z., Špatenka P. Rotational molding of plasma treated polyethylene/short glass fiber composites. Int. J. Eng. Manag. Sci. 2019;4:103–108. doi: 10.21791/IJEMS.2019.4.11. DOI

Ali Z., Gao Y., Tang B., Wu X., Wang Y., Li M., Hou X., Li L., Jiang N., Yu J. Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management applications. Polymers. 2021;13:169. doi: 10.3390/polym13010169. PubMed DOI PMC

Yao S.S., Jin F.L., Rhee K.Y., Hui D., Park S.J. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos. Part B Eng. 2018;142:241–250. doi: 10.1016/j.compositesb.2017.12.007. DOI

Hsieh C.T., Pan Y.J., Lin J.H. Polypropylene/high-density polyethylene/carbon fiber composites: Manufacturing techniques, mechanical properties, and electromagnetic interference shielding effectiveness. Fibers Polym. 2017;18:155–161. doi: 10.1007/s12221-017-6371-0. DOI

Mohd Radzuan N.A., Yusuf Zakaria M., Sulong A.B., Sahari J. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Compos. Part B Eng. 2017;110:153–160. doi: 10.1016/j.compositesb.2016.11.021. DOI

Hu C., Liao X., Qin Q.H., Wang G. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers. Compos. Part A Appl. Sci. Manuf. 2019;121:149–156. doi: 10.1016/j.compositesa.2019.03.027. DOI

Van de Werken N., Reese M.S., Taha M.R., Tehrani M. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 2019;119:38–47. doi: 10.1016/j.compositesa.2019.01.012. DOI

Meng F., McKechnie J., Turner T., Wong K.H., Pickering S.J. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications. Environ. Sci. Technol. 2017;51:12727–12736. doi: 10.1021/acs.est.7b04069. PubMed DOI

Holmes M. Recycled carbon fiber composites become a reality. Reinf. Plast. 2018;62:148–153. doi: 10.1016/j.repl.2017.11.012. DOI

Radjef R., Jarvis K.L., Fox B.L., McArthur S.L. Comparing the properties of commercially treated and air plasma treated carbon fibers. Surf. Coat. Technol. 2021;408:126751. doi: 10.1016/j.surfcoat.2020.126751. DOI

Liu Y., Guo Y., Zhao J., Chen X., Zhang H., Hu G., Yu X., Zhang Z. Carbon fiber reinforced shape memory epoxy composites with superior mechanical performances. Compos. Sci. Technol. 2019;177:49–56. doi: 10.1016/j.compscitech.2019.04.014. DOI

Zha J.W., Wu D.H., Yang Y., Wu Y.H., Li R.K.Y., Dang Z.M. Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors. RSC Adv. 2017;7:11338–11344. doi: 10.1039/C6RA27367J. DOI

Li Y., Nie M., Wang Q. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation. ACS Appl. Mater. Interfaces. 2018;10:1005–1016. doi: 10.1021/acsami.7b17131. PubMed DOI

Luo Y., Xiong S.Y., Zhang F., He X.X., Lu X., Peng R.T. Preparation of conductive polylactic acid/high density polyethylene/carbon black composites with low percolation threshold by locating the carbon black at the Interface of co-continuous blends. J. Appl. Polym. Sci. 2021;138:50291. doi: 10.1002/app.50291. DOI

Cho B.G., Hwang S.H., Park M., Park J.K., Park Y.B., Chae H.G. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos. Part B Eng. 2019;160:436–445. doi: 10.1016/j.compositesb.2018.12.062. DOI

Lu C., Qiu S., Lu X., Wang J., Xiao L., Zheng T., Wang X., Zhang D. Enhancing the interfacial strength of carbon fiber/poly(ether ether ketone) hybrid composites by plasma treatments. Polymers. 2019;11:753. doi: 10.3390/polym11050753. PubMed DOI PMC

Sangnal Matt Durandhara Murthy V., Vaidya U. Improving the adhesion of glass/polypropylene (glass-PP) and high-density polyethylene (HDPE) surfaces by open air plasma treatment. Int. J. Adhes. Adhes. 2019;95:102435. doi: 10.1016/j.ijadhadh.2019.102435. DOI

Šourková H.J., Weberová Z., Antoň J., Špatenka P. Wettability and Adhesion of Polyethylene Powder Treated with Non-Equilibrium Various Gaseous Plasma in Semi-Industrial Equipment. Materials. 2022;15:686. doi: 10.3390/ma15020686. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...