Plasma Activation of Polyethylene Powder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32942735
PubMed Central
PMC7570165
DOI
10.3390/polym12092099
PII: polym12092099
Knihovny.cz E-zdroje
- Klíčová slova
- batch mode treatment, plasma treatment, polymer powder, surface activation,
- Publikační typ
- časopisecké články MeSH
Polyethylene powder of average particle diameter of 160 µm was activated in a plasma reactor made from aluminum of volume 64 dm3 at the pressure 100 Pa. Dense oxygen plasma was sustained with a microwave discharge powered by a pulsed magnetron source of power 1 kW mounted onto the top flange of the plasma reactor. Polymer powder was treated in a batch mode with 0.25 kg/batch. The powder was placed into a stainless-steel dish mounted in the center of the reactor where diffusing plasma of low ion density, and the O-atom density of 2 × 1021 m-3 was sustained. The powder was stirred in the dish at the rate of 40 rpm. The evolution of powder wettability versus treatment time was measured using the Washburne method, and the surface composition was determined by X-ray Photoelectron Spectroscopy (XPS). The wettability versus the oxygen concentration assumed a parabolic behavior. The maximal oxygen concentration, as revealed by XPS, was 17.5 at.%, and the maximal increase of wettability was 220%. The efficiency of O-atoms utilization in these experimental conditions was about 10% taking into account the spherical geometry of dust particles and perfectly smooth surface. The method is scalable to large industrial systems.
Zobrazit více v PubMed
Mozetič M. Surface modification to improve properties of materials. Materials. 2019;12:441. doi: 10.3390/ma12030441. PubMed DOI PMC
Abou Rich S., Dufour T., Leroy P., Reniers F., Nittler L., Pireaux J.-J. LDPE surface modifications induced by atmospheric plasma torches with linear and showerhead configurations. Plasma Process. Polym. 2015;12:771–785. doi: 10.1002/ppap.201400097. DOI
Esbah Tabaei P.S., Ghobeira R., Cools P., Rezaei F., Nikiforov A., Morent R., De Geyter N. Comparative study between in-plasma and post-plasma chemical processes occurring at the surface of UHMWPE subjected to medium pressure Ar and N2 plasma activation. Polymer. 2020;193:122383. doi: 10.1016/j.polymer.2020.122383. DOI
Pandiyaraj K.N., Deshmukh R.R., Ruzybayev I., Shah S.I., Su P.-G., Halleluyah J.M., Halim A.S. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE) Appl. Surf. Sci. 2014;307:109–119. doi: 10.1016/j.apsusc.2014.03.177. DOI
Bílek F., Křížová T., Lehocký M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI
Sanchis R., Fenollar O., García D., Sánchez L., Balart R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 2008;28:445–451. doi: 10.1016/j.ijadhadh.2008.04.002. DOI
Vesel A., Mozetic M. New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 2017;50:293001. doi: 10.1088/1361-6463/aa748a. DOI
Vesel A., Primc G., Zaplotnik R., Mozetič M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control. Fusion. 2020;62:024008. doi: 10.1088/1361-6587/ab5b50. DOI
Arpagaus C., Oberbossel G., Rudolf von Rohr P. Plasma treatment of polymer powders—From laboratory research to industrial application. Plasma Process. Polym. 2018;15:1800133. doi: 10.1002/ppap.201800133. DOI
Bretagnol F., Tatoulian M., Arefi-Khonsari F., Lorang G., Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React. Funct. Polym. 2004;61:221–232. doi: 10.1016/j.reactfunctpolym.2004.06.003. DOI
Inagaki N., Tasaka S., Abe H. Surface modification of polyethylene powder using plasma reactor with fluidized bed. J. Appl. Polym. Sci. 1992;46:595–601. doi: 10.1002/app.1992.070460405. DOI
Arpagaus C., Sonnenfeld A., von Rohr P.R. A Downer reactor for short-time plasma surface modification of polymer powders. Chem. Eng. Technol. 2005;28:87–94. doi: 10.1002/ceat.200407045. DOI
Quitzau M., Wolter M., Kersten H. Plasma treatment of polyethylene powder particles in a hollow cathode glow discharge. Plasma Process. Polym. 2009;6:392–396. doi: 10.1002/ppap.200930909. DOI
Šourková H., Primc G., Špatenka P. Surface functionalization of polyethylene granules by treatment with low-pressure air plasma. Materials. 2018;11:885. doi: 10.3390/ma11060885. PubMed DOI PMC
Fang S., Meng Y., Shen J., Cong J. Surface treatment of polypropylene powders using a plasma reactor with a stirrer. Plasma Sci. Technol. 2011;13:217–222. doi: 10.1088/1009-0630/13/2/18. DOI
Zaplotnik R., Vesel A., Mozetič M. Atomic oxygen and hydrogen loss coefficient on functionalized polyethylene terephthalate, polystyrene polytetrafluoroethylene polymers. Plasma Process. Polym. 2018;15:1800021. doi: 10.1002/ppap.201800021. DOI
Vesel A., Mozetic M., Balat-Pichelin M. Oxygen atom density in microwave oxygen plasma. Vacuum. 2007;81:1088–1093. doi: 10.1016/j.vacuum.2007.02.003. DOI
Plasma Calculator, Ruhr University Bochum. [(accessed on 18 August 2020)]; Available online: https://www.ep2.ruhr-uni-bochum.de/index.php/plasma-calculator.
Vukušić T., Vesel A., Holc M., Ščetar M., Jambrak A.R., Mozetič M. Modification of physico-chemical properties of acryl-coated polypropylene foils for food packaging by reactive particles from oxygen plasma. Materials. 2018;11:372. doi: 10.3390/ma11030372. PubMed DOI PMC
Vesel A., Zaplotnik R., Kovac J., Mozetic M. Initial stages in functionalization of polystyrene upon treatment with oxygen plasma late flowing afterglow. Plasma Sources Sci. Technol. 2018;27:094005. doi: 10.1088/1361-6595/aad486. DOI
Dow Chemical Company, Technical Information: DowlexTM 2629UE Polyethylene Resin. [(accessed on 24 August 2020)]; Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/400/400-00089043en-dowlex-2629ue-tds.pdf.
Primc G., Mozetič M. Neutral reactive gaseous species in reactors suitable for plasma surface engineering. Surf. Coat. Technol. 2019;376:15–20. doi: 10.1016/j.surfcoat.2018.11.103. DOI
Washburn E.W. The dynamics of capillary flow. Phys. Rev. 1921;17:273–283. doi: 10.1103/PhysRev.17.273. DOI
Shirley D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI
Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI