Plasma Activation of Polyethylene Powder

. 2020 Sep 15 ; 12 (9) : . [epub] 20200915

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32942735

Polyethylene powder of average particle diameter of 160 µm was activated in a plasma reactor made from aluminum of volume 64 dm3 at the pressure 100 Pa. Dense oxygen plasma was sustained with a microwave discharge powered by a pulsed magnetron source of power 1 kW mounted onto the top flange of the plasma reactor. Polymer powder was treated in a batch mode with 0.25 kg/batch. The powder was placed into a stainless-steel dish mounted in the center of the reactor where diffusing plasma of low ion density, and the O-atom density of 2 × 1021 m-3 was sustained. The powder was stirred in the dish at the rate of 40 rpm. The evolution of powder wettability versus treatment time was measured using the Washburne method, and the surface composition was determined by X-ray Photoelectron Spectroscopy (XPS). The wettability versus the oxygen concentration assumed a parabolic behavior. The maximal oxygen concentration, as revealed by XPS, was 17.5 at.%, and the maximal increase of wettability was 220%. The efficiency of O-atoms utilization in these experimental conditions was about 10% taking into account the spherical geometry of dust particles and perfectly smooth surface. The method is scalable to large industrial systems.

Zobrazit více v PubMed

Mozetič M. Surface modification to improve properties of materials. Materials. 2019;12:441. doi: 10.3390/ma12030441. PubMed DOI PMC

Abou Rich S., Dufour T., Leroy P., Reniers F., Nittler L., Pireaux J.-J. LDPE surface modifications induced by atmospheric plasma torches with linear and showerhead configurations. Plasma Process. Polym. 2015;12:771–785. doi: 10.1002/ppap.201400097. DOI

Esbah Tabaei P.S., Ghobeira R., Cools P., Rezaei F., Nikiforov A., Morent R., De Geyter N. Comparative study between in-plasma and post-plasma chemical processes occurring at the surface of UHMWPE subjected to medium pressure Ar and N2 plasma activation. Polymer. 2020;193:122383. doi: 10.1016/j.polymer.2020.122383. DOI

Pandiyaraj K.N., Deshmukh R.R., Ruzybayev I., Shah S.I., Su P.-G., Halleluyah J.M., Halim A.S. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE) Appl. Surf. Sci. 2014;307:109–119. doi: 10.1016/j.apsusc.2014.03.177. DOI

Bílek F., Křížová T., Lehocký M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI

Sanchis R., Fenollar O., García D., Sánchez L., Balart R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 2008;28:445–451. doi: 10.1016/j.ijadhadh.2008.04.002. DOI

Vesel A., Mozetic M. New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 2017;50:293001. doi: 10.1088/1361-6463/aa748a. DOI

Vesel A., Primc G., Zaplotnik R., Mozetič M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control. Fusion. 2020;62:024008. doi: 10.1088/1361-6587/ab5b50. DOI

Arpagaus C., Oberbossel G., Rudolf von Rohr P. Plasma treatment of polymer powders—From laboratory research to industrial application. Plasma Process. Polym. 2018;15:1800133. doi: 10.1002/ppap.201800133. DOI

Bretagnol F., Tatoulian M., Arefi-Khonsari F., Lorang G., Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React. Funct. Polym. 2004;61:221–232. doi: 10.1016/j.reactfunctpolym.2004.06.003. DOI

Inagaki N., Tasaka S., Abe H. Surface modification of polyethylene powder using plasma reactor with fluidized bed. J. Appl. Polym. Sci. 1992;46:595–601. doi: 10.1002/app.1992.070460405. DOI

Arpagaus C., Sonnenfeld A., von Rohr P.R. A Downer reactor for short-time plasma surface modification of polymer powders. Chem. Eng. Technol. 2005;28:87–94. doi: 10.1002/ceat.200407045. DOI

Quitzau M., Wolter M., Kersten H. Plasma treatment of polyethylene powder particles in a hollow cathode glow discharge. Plasma Process. Polym. 2009;6:392–396. doi: 10.1002/ppap.200930909. DOI

Šourková H., Primc G., Špatenka P. Surface functionalization of polyethylene granules by treatment with low-pressure air plasma. Materials. 2018;11:885. doi: 10.3390/ma11060885. PubMed DOI PMC

Fang S., Meng Y., Shen J., Cong J. Surface treatment of polypropylene powders using a plasma reactor with a stirrer. Plasma Sci. Technol. 2011;13:217–222. doi: 10.1088/1009-0630/13/2/18. DOI

Zaplotnik R., Vesel A., Mozetič M. Atomic oxygen and hydrogen loss coefficient on functionalized polyethylene terephthalate, polystyrene polytetrafluoroethylene polymers. Plasma Process. Polym. 2018;15:1800021. doi: 10.1002/ppap.201800021. DOI

Vesel A., Mozetic M., Balat-Pichelin M. Oxygen atom density in microwave oxygen plasma. Vacuum. 2007;81:1088–1093. doi: 10.1016/j.vacuum.2007.02.003. DOI

Plasma Calculator, Ruhr University Bochum. [(accessed on 18 August 2020)]; Available online: https://www.ep2.ruhr-uni-bochum.de/index.php/plasma-calculator.

Vukušić T., Vesel A., Holc M., Ščetar M., Jambrak A.R., Mozetič M. Modification of physico-chemical properties of acryl-coated polypropylene foils for food packaging by reactive particles from oxygen plasma. Materials. 2018;11:372. doi: 10.3390/ma11030372. PubMed DOI PMC

Vesel A., Zaplotnik R., Kovac J., Mozetic M. Initial stages in functionalization of polystyrene upon treatment with oxygen plasma late flowing afterglow. Plasma Sources Sci. Technol. 2018;27:094005. doi: 10.1088/1361-6595/aad486. DOI

Dow Chemical Company, Technical Information: DowlexTM 2629UE Polyethylene Resin. [(accessed on 24 August 2020)]; Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/400/400-00089043en-dowlex-2629ue-tds.pdf.

Primc G., Mozetič M. Neutral reactive gaseous species in reactors suitable for plasma surface engineering. Surf. Coat. Technol. 2019;376:15–20. doi: 10.1016/j.surfcoat.2018.11.103. DOI

Washburn E.W. The dynamics of capillary flow. Phys. Rev. 1921;17:273–283. doi: 10.1103/PhysRev.17.273. DOI

Shirley D.A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI

Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron. Spectrosc. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...