The Effect of Plasma Treatment of Polyethylene Powder and Glass Fibers on Selected Properties of Their Composites Prepared via Rotational Molding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35808638
PubMed Central
PMC9269013
DOI
10.3390/polym14132592
PII: polym14132592
Knihovny.cz E-zdroje
- Klíčová slova
- adhesion, composites, glass fiber, plasma treatment, polyethylene, rotational molding,
- Publikační typ
- časopisecké články MeSH
In this article, the effect of plasma treatment of polyethylene powder and glass fibers on the adhesion between polyethylene and glass fibers in composites prepared by rotational molding was studied. In contrast to other processing techniques, such as injection molding, the rotational molding process operates at atmospheric pressure, and no pressure is added to ensure mechanical interlocking. This makes reinforcing the rotomolded product very difficult. Therefore, the formation of chemical bonds is necessary for strong adhesion. Different combinations of untreated polyethylene (UT.PE), plasma-treated polyethylene (PT.PE), untreated and plasma-treated glass fibers were manually mixed and processed by rotational molding. The resulting composites were cut and tested to demonstrate the effect of the treatment on the adhesion between the composite components and on the mechanical properties of the final composites. The results showed that the treatment of both powder and fiber improved the adhesion between the matrix and fibers, thus improving the mechanical properties of the resulting composites compared to those of pure polyethylene samples and composites prepared using untreated components. The tensile strength, tensile modulus, and flexural modulus of the composites prepared using 10-min treated powder with 20 wt% of 40-min treated fibers improved by 20%, 82%, and 98%, respectively, compared to the pure polyethylene samples.
Zobrazit více v PubMed
Crwaford R.J., Throne J.L. Rotational Moulding Technology. 1st ed. William Andrew; New York, NY, USA: 2002.
Ogila K.O., Shao M., Yang W., Tan J. Rotational molding: A review of the models and materials. Express Polym. Lett. 2017;11:778–798. doi: 10.3144/expresspolymlett.2017.75. DOI
Chaudhary B.I., Takács E., Vlachopoulos J. Processing enhancers for rotational molding of polyethylene. Polym. Eng. Sci. 2001;41:1731–1742. doi: 10.1002/pen.10870. DOI
Abdullah M.Z., Bickerton S., Bhattacharyya D., Crawford R.J., Harkin-Jones E. Rotational Molding Cycle Time Reduction Using a Combination of Physical Techniques. Polym. Eng. Sci. 2009;49:1846–1854. doi: 10.1002/pen.21260. DOI
Sun D.-W., Crawford R.J. Analysis of the effects of internal heating and cooling during the rotational molding of plastics. Polym. Eng. Sci. 1993;33:132–139. doi: 10.1002/pen.760330303. DOI
Spence A.G., Crawford R.J. Removal of pinholes and bubbles from rotationally moulded products. J. Eng. Manuf. 1996;210:521–533. doi: 10.1243/PIME_PROC_1996_210_151_02. DOI
Gogos G. Bubble Removal in Rotational Molding. Polym. Eng. Sci. 2004;44:388–394. doi: 10.1002/pen.20035. DOI
Liu S.J., Fu K.H. Effect of enhancing fins on the heating/cooling efficiency of rotational molding and the molded product qualities. Polym. Test. 2008;27:209–220. doi: 10.1016/j.polymertesting.2007.10.004. DOI
Torres F.G., Aguirre M. Rotational Moulding and Powder Processing of Natural Fibre Reinforced Thermoplastics. Int. Polym. Process. 2003;18:204–210. doi: 10.3139/217.1736. DOI
Wang B., Panigrahi S., Tabil L., Crerar W. Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites. J. Reinf. Plast. Compos. 2007;26:447–463. doi: 10.1177/0731684406072526. DOI
Ortega Z., Monzón M.D., Benítez A.N., Kearns M., Mccourt M., Hornsby P.R. Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process. Mater. Manuf. Process. 2013;28:37–41. doi: 10.1080/10426914.2013.792431. DOI
Cisneros-lópez E.O., González-lópez M.E., Pérez-fonseca A.A., González-núñez R., Rodrigue D., Robledo-ortíz J.R., González-lópez M.E., Pérez-fonseca A.A. Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos. Interfaces. 2016;6440:35–53. doi: 10.1080/09276440.2016.1184556. DOI
Cisneros-López E.O., Pérez-Fonseca A.A., González-García Y., Ramírez-Arreola D.E., González-Núñez R., Rodrigue D., Robledo-Ortíz J.R. Polylactic acid–agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Adv. Polym. Technol. 2018;37:2528–2540. doi: 10.1002/adv.21928. DOI
Martín J.R.R., Rodrigue E.G.D. Improving the Compatibility and Mechanical Properties of Natural Fibers / Green Polyethylene Biocomposites Produced by Rotational Author’s personal copy. J. Polym. Environ. 2020;28:1040–1049.
Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI
Hanana F.E., Rodrigue D. Rotational Molding of Self-Hybrid Composites Based on Linear Low-Density Polyethylene and Maple Fibers. Polym. Compos. 2017;39:4094–4103. doi: 10.1002/pc.24473. DOI
Hanana F.E., Chimeni D.Y., Rodrigue D. Morphology and mechanical properties of maple reinforced LLDPE produced by rotational moulding: Effect of fibre content and surface treatment. Polym. Polym. Compos. 2018;26:299–308. doi: 10.1177/096739111802600404. DOI
Barczewski M., Szostak M., Nowak D., Piasecki A. Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery. 2018;63 doi: 10.14314/polimery.2018.11.5. DOI
Arribasplata-seguin A., Quispe-dominguez R., Tupia-anticona W., Acosta-sullcahuam J. Rotational molding parameters of wood-plastic composite materials made of recycled high density polyethylene and wood particles. Compos. Part B Eng. 2021;217 doi: 10.1016/j.compositesb.2021.108876. DOI
Andrzejewski J., Krawczak A., Weso K., Szostak M. Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly (lactic acid) PLA. Compos. Part B Eng. 2020;202 doi: 10.1016/j.compositesb.2020.108410. DOI
Chang W.C., Harkin-Jones E., Kearns M., McCourt M. Multilayered glass fibre-reinforced composites in rotational moulding. AIP Conf. Proc. 2011;1353:708–713. doi: 10.1063/1.3589598. DOI
Höfler G., Jayaraman K., Lin R. Rotational moulding and mechanical characterisation of micron-sized and nano-sized reinforced high density polyethylene. Key Eng. Mater. 2019;809:65–70. doi: 10.4028/www.scientific.net/KEM.809.65. DOI
Yan W., Lin R.J.T., Bickerton S., Bhattacharyya D. Rotational Moulding of Particulate Reinforced Polymeric Shell Structures. Mater. Sci. Forum. 2003;437–438:235–238. doi: 10.4028/www.scientific.net/MSF.437-438.235. DOI
Yan W., Lin R.J.T., Bhattacharyya D. Particulate reinforced rotationally moulded polyethylene composites-Mixing methods and mechanical properties. Compos. Sci. Technol. 2006;66:2080–2088. doi: 10.1016/j.compscitech.2005.12.022. DOI
Baumer M.I., Leite J.L., Becker D. Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding. Mater. Res. 2014;17:130–137. doi: 10.1590/S1516-14392013005000159. DOI
Calò E., Massaro C., Terzi R., Cancellara A., Pesce E., Re M., Greco A., Maffezzoli A., Gonzalez-Chi P.I., Salomi A. Rotational molding of polyamide-6 nano composites with improved flame retardancy. Int. Polym. Process. 2012;27:370–377. doi: 10.3139/217.2552. DOI
Girish Chandran V., Waigaonkar S.D. Mechanical Properties and Creep Behavior of Rotationally Moldable Linear Low Density Polyethylene-Fumed Silica Nanocomposites. Polym. Compos. 2017;38:421–430. doi: 10.1002/pc.23600. DOI
Mhike W., Focke W.W., Asante J.K.O. Rotomolded antistatic and flame-retarded graphite nanocomposites. J. Thermoplast. Compos. Mater. 2018;31:535–552. doi: 10.1177/0892705717712634. DOI
Höfler G., Lin R.J.T., Jayaraman K. Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. J. Polym. Res. 2018;25 doi: 10.1007/s10965-018-1525-3. DOI
Zepeda-Rodríguez Z., Arellano-Martínez M.R., Cruz-Barba E., Zamudio-Ojeda A., Rodrigue D., Vázquez-Lepe M., González-Núñez R. Mechanical and thermal properties of polyethylene/carbon nanofiber composites produced by rotational molding. Polym. Compos. 2020;41:1224–1233. doi: 10.1002/pc.25448. DOI
Torres F.G.Ã., Aragon C.L. Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polym. Test. 2006;25:568–577. doi: 10.1016/j.polymertesting.2006.03.010. DOI
Pavlatová M., Horáková M., Hladík J., Špatenka P. Plasma surface treatment of powder materials-Process and application. Acta Polytech. 2012;52:83–88. doi: 10.14311/1562. DOI
Cech V., Prikryl R., Balkova R., Grycova A., Vanek J. Plasma surface treatment and modification of glass fibers. Compos. Part A Appl. Sci. Manuf. 2002;33:1367–1372. doi: 10.1016/S1359-835X(02)00149-5. DOI
Haji A. Effect of Plasma Treatment on Glass Fiber / Epoxy Resin Composite; Proceedings of the 2nd International Congress of Innovative Textiles (ICONTEX2019); Çorlu, Turkey. 17–18 April 2019.
Trejbal J., Šmilauer V., Kromka A., Potocký Š., Kopecký L. Wettability enhancement of polymeric and glass micro fiber reinforcement by plasma treatment; Proceedings of the NANOCON 2015-7th International Conference on Nanomaterials-Research and Application; Brno, Czech Republic. 14–16 October 2015; pp. 315–320.
Gabriel J., De Farias G., Cordeiro R., Rodrigues B., Magalhães H., Scholz S., Antoun R. Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydr. Polym. 2017;165:429–436. doi: 10.1016/j.carbpol.2017.02.042. PubMed DOI
Enciso B., Abenojar J. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose. 2017;24:1791–1801. doi: 10.1007/s10570-017-1209-x. DOI
Jang J., Yang H. The effect of surface treatment on the performance improvement of carbon fiber / polybenzoxazine composites. J. Mater. Sci. 2000;5:2297–2303. doi: 10.1023/A:1004791313979. DOI
Taylor P., Fu Y.F., Xu K., Li J., Sun Z.Y., Zhang F.Q., Chen D.M., Fu Y.F., Xu K., Li J., et al. The Influence of Plasma Surface Treatment of Carbon Fibers on the Interfacial Adhesion Properties of UHMWPE Composite. Polym. Plast. Technol. Eng. 2012;51:273–276. doi: 10.1080/03602559.2011.617406. DOI
Xie J., Xin D., Cao H., Wang C., Zhao Y., Yao L., Ji F., Qiu Y. Improving carbon fi ber adhesion to polyimide with atmospheric pressure plasma treatment. Surf. Coat. Technol. 2011;206:191–201. doi: 10.1016/j.surfcoat.2011.04.016. DOI
Šourková H., Špatenka P. Plasma activation of polyethylene powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC
Weberová Z., Šourková H., Antoň J., Vacková T., Špatenka P. New method for optimization of polymer powder plasma treatment for composite materials. Polymers. 2021;13:965. doi: 10.3390/polym13060965. PubMed DOI PMC