The Effect of Plasma Treatment of Polyethylene Powder and Glass Fibers on Selected Properties of Their Composites Prepared via Rotational Molding

. 2022 Jun 26 ; 14 (13) : . [epub] 20220626

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35808638

In this article, the effect of plasma treatment of polyethylene powder and glass fibers on the adhesion between polyethylene and glass fibers in composites prepared by rotational molding was studied. In contrast to other processing techniques, such as injection molding, the rotational molding process operates at atmospheric pressure, and no pressure is added to ensure mechanical interlocking. This makes reinforcing the rotomolded product very difficult. Therefore, the formation of chemical bonds is necessary for strong adhesion. Different combinations of untreated polyethylene (UT.PE), plasma-treated polyethylene (PT.PE), untreated and plasma-treated glass fibers were manually mixed and processed by rotational molding. The resulting composites were cut and tested to demonstrate the effect of the treatment on the adhesion between the composite components and on the mechanical properties of the final composites. The results showed that the treatment of both powder and fiber improved the adhesion between the matrix and fibers, thus improving the mechanical properties of the resulting composites compared to those of pure polyethylene samples and composites prepared using untreated components. The tensile strength, tensile modulus, and flexural modulus of the composites prepared using 10-min treated powder with 20 wt% of 40-min treated fibers improved by 20%, 82%, and 98%, respectively, compared to the pure polyethylene samples.

Zobrazit více v PubMed

Crwaford R.J., Throne J.L. Rotational Moulding Technology. 1st ed. William Andrew; New York, NY, USA: 2002.

Ogila K.O., Shao M., Yang W., Tan J. Rotational molding: A review of the models and materials. Express Polym. Lett. 2017;11:778–798. doi: 10.3144/expresspolymlett.2017.75. DOI

Chaudhary B.I., Takács E., Vlachopoulos J. Processing enhancers for rotational molding of polyethylene. Polym. Eng. Sci. 2001;41:1731–1742. doi: 10.1002/pen.10870. DOI

Abdullah M.Z., Bickerton S., Bhattacharyya D., Crawford R.J., Harkin-Jones E. Rotational Molding Cycle Time Reduction Using a Combination of Physical Techniques. Polym. Eng. Sci. 2009;49:1846–1854. doi: 10.1002/pen.21260. DOI

Sun D.-W., Crawford R.J. Analysis of the effects of internal heating and cooling during the rotational molding of plastics. Polym. Eng. Sci. 1993;33:132–139. doi: 10.1002/pen.760330303. DOI

Spence A.G., Crawford R.J. Removal of pinholes and bubbles from rotationally moulded products. J. Eng. Manuf. 1996;210:521–533. doi: 10.1243/PIME_PROC_1996_210_151_02. DOI

Gogos G. Bubble Removal in Rotational Molding. Polym. Eng. Sci. 2004;44:388–394. doi: 10.1002/pen.20035. DOI

Liu S.J., Fu K.H. Effect of enhancing fins on the heating/cooling efficiency of rotational molding and the molded product qualities. Polym. Test. 2008;27:209–220. doi: 10.1016/j.polymertesting.2007.10.004. DOI

Torres F.G., Aguirre M. Rotational Moulding and Powder Processing of Natural Fibre Reinforced Thermoplastics. Int. Polym. Process. 2003;18:204–210. doi: 10.3139/217.1736. DOI

Wang B., Panigrahi S., Tabil L., Crerar W. Pre-treatment of Flax Fibers for use in Rotationally Molded Biocomposites. J. Reinf. Plast. Compos. 2007;26:447–463. doi: 10.1177/0731684406072526. DOI

Ortega Z., Monzón M.D., Benítez A.N., Kearns M., Mccourt M., Hornsby P.R. Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process Banana and Abaca Fiber-Reinforced Plastic Composites Obtained by Rotational Molding Process. Mater. Manuf. Process. 2013;28:37–41. doi: 10.1080/10426914.2013.792431. DOI

Cisneros-lópez E.O., González-lópez M.E., Pérez-fonseca A.A., González-núñez R., Rodrigue D., Robledo-ortíz J.R., González-lópez M.E., Pérez-fonseca A.A. Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos. Interfaces. 2016;6440:35–53. doi: 10.1080/09276440.2016.1184556. DOI

Cisneros-López E.O., Pérez-Fonseca A.A., González-García Y., Ramírez-Arreola D.E., González-Núñez R., Rodrigue D., Robledo-Ortíz J.R. Polylactic acid–agave fiber biocomposites produced by rotational molding: A comparative study with compression molding. Adv. Polym. Technol. 2018;37:2528–2540. doi: 10.1002/adv.21928. DOI

Martín J.R.R., Rodrigue E.G.D. Improving the Compatibility and Mechanical Properties of Natural Fibers / Green Polyethylene Biocomposites Produced by Rotational Author’s personal copy. J. Polym. Environ. 2020;28:1040–1049.

Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI

Hanana F.E., Rodrigue D. Rotational Molding of Self-Hybrid Composites Based on Linear Low-Density Polyethylene and Maple Fibers. Polym. Compos. 2017;39:4094–4103. doi: 10.1002/pc.24473. DOI

Hanana F.E., Chimeni D.Y., Rodrigue D. Morphology and mechanical properties of maple reinforced LLDPE produced by rotational moulding: Effect of fibre content and surface treatment. Polym. Polym. Compos. 2018;26:299–308. doi: 10.1177/096739111802600404. DOI

Barczewski M., Szostak M., Nowak D., Piasecki A. Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery. 2018;63 doi: 10.14314/polimery.2018.11.5. DOI

Arribasplata-seguin A., Quispe-dominguez R., Tupia-anticona W., Acosta-sullcahuam J. Rotational molding parameters of wood-plastic composite materials made of recycled high density polyethylene and wood particles. Compos. Part B Eng. 2021;217 doi: 10.1016/j.compositesb.2021.108876. DOI

Andrzejewski J., Krawczak A., Weso K., Szostak M. Rotational molding of biocomposites with addition of buckwheat husk filler. Structure-property correlation assessment for materials based on polyethylene (PE) and poly (lactic acid) PLA. Compos. Part B Eng. 2020;202 doi: 10.1016/j.compositesb.2020.108410. DOI

Chang W.C., Harkin-Jones E., Kearns M., McCourt M. Multilayered glass fibre-reinforced composites in rotational moulding. AIP Conf. Proc. 2011;1353:708–713. doi: 10.1063/1.3589598. DOI

Höfler G., Jayaraman K., Lin R. Rotational moulding and mechanical characterisation of micron-sized and nano-sized reinforced high density polyethylene. Key Eng. Mater. 2019;809:65–70. doi: 10.4028/www.scientific.net/KEM.809.65. DOI

Yan W., Lin R.J.T., Bickerton S., Bhattacharyya D. Rotational Moulding of Particulate Reinforced Polymeric Shell Structures. Mater. Sci. Forum. 2003;437–438:235–238. doi: 10.4028/www.scientific.net/MSF.437-438.235. DOI

Yan W., Lin R.J.T., Bhattacharyya D. Particulate reinforced rotationally moulded polyethylene composites-Mixing methods and mechanical properties. Compos. Sci. Technol. 2006;66:2080–2088. doi: 10.1016/j.compscitech.2005.12.022. DOI

Baumer M.I., Leite J.L., Becker D. Influence of calcium carbonate and slip agent addition on linear medium density polyethylene processed by rotational molding. Mater. Res. 2014;17:130–137. doi: 10.1590/S1516-14392013005000159. DOI

Calò E., Massaro C., Terzi R., Cancellara A., Pesce E., Re M., Greco A., Maffezzoli A., Gonzalez-Chi P.I., Salomi A. Rotational molding of polyamide-6 nano composites with improved flame retardancy. Int. Polym. Process. 2012;27:370–377. doi: 10.3139/217.2552. DOI

Girish Chandran V., Waigaonkar S.D. Mechanical Properties and Creep Behavior of Rotationally Moldable Linear Low Density Polyethylene-Fumed Silica Nanocomposites. Polym. Compos. 2017;38:421–430. doi: 10.1002/pc.23600. DOI

Mhike W., Focke W.W., Asante J.K.O. Rotomolded antistatic and flame-retarded graphite nanocomposites. J. Thermoplast. Compos. Mater. 2018;31:535–552. doi: 10.1177/0892705717712634. DOI

Höfler G., Lin R.J.T., Jayaraman K. Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. J. Polym. Res. 2018;25 doi: 10.1007/s10965-018-1525-3. DOI

Zepeda-Rodríguez Z., Arellano-Martínez M.R., Cruz-Barba E., Zamudio-Ojeda A., Rodrigue D., Vázquez-Lepe M., González-Núñez R. Mechanical and thermal properties of polyethylene/carbon nanofiber composites produced by rotational molding. Polym. Compos. 2020;41:1224–1233. doi: 10.1002/pc.25448. DOI

Torres F.G.Ã., Aragon C.L. Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polym. Test. 2006;25:568–577. doi: 10.1016/j.polymertesting.2006.03.010. DOI

Pavlatová M., Horáková M., Hladík J., Špatenka P. Plasma surface treatment of powder materials-Process and application. Acta Polytech. 2012;52:83–88. doi: 10.14311/1562. DOI

Cech V., Prikryl R., Balkova R., Grycova A., Vanek J. Plasma surface treatment and modification of glass fibers. Compos. Part A Appl. Sci. Manuf. 2002;33:1367–1372. doi: 10.1016/S1359-835X(02)00149-5. DOI

Haji A. Effect of Plasma Treatment on Glass Fiber / Epoxy Resin Composite; Proceedings of the 2nd International Congress of Innovative Textiles (ICONTEX2019); Çorlu, Turkey. 17–18 April 2019.

Trejbal J., Šmilauer V., Kromka A., Potocký Š., Kopecký L. Wettability enhancement of polymeric and glass micro fiber reinforcement by plasma treatment; Proceedings of the NANOCON 2015-7th International Conference on Nanomaterials-Research and Application; Brno, Czech Republic. 14–16 October 2015; pp. 315–320.

Gabriel J., De Farias G., Cordeiro R., Rodrigues B., Magalhães H., Scholz S., Antoun R. Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydr. Polym. 2017;165:429–436. doi: 10.1016/j.carbpol.2017.02.042. PubMed DOI

Enciso B., Abenojar J. Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose. 2017;24:1791–1801. doi: 10.1007/s10570-017-1209-x. DOI

Jang J., Yang H. The effect of surface treatment on the performance improvement of carbon fiber / polybenzoxazine composites. J. Mater. Sci. 2000;5:2297–2303. doi: 10.1023/A:1004791313979. DOI

Taylor P., Fu Y.F., Xu K., Li J., Sun Z.Y., Zhang F.Q., Chen D.M., Fu Y.F., Xu K., Li J., et al. The Influence of Plasma Surface Treatment of Carbon Fibers on the Interfacial Adhesion Properties of UHMWPE Composite. Polym. Plast. Technol. Eng. 2012;51:273–276. doi: 10.1080/03602559.2011.617406. DOI

Xie J., Xin D., Cao H., Wang C., Zhao Y., Yao L., Ji F., Qiu Y. Improving carbon fi ber adhesion to polyimide with atmospheric pressure plasma treatment. Surf. Coat. Technol. 2011;206:191–201. doi: 10.1016/j.surfcoat.2011.04.016. DOI

Šourková H., Špatenka P. Plasma activation of polyethylene powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC

Weberová Z., Šourková H., Antoň J., Vacková T., Špatenka P. New method for optimization of polymer powder plasma treatment for composite materials. Polymers. 2021;13:965. doi: 10.3390/polym13060965. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...