New Method for Optimization of Polymer Powder Plasma Treatment for Composite Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ01000310
Technology Agency of the Czech Republic
FV40315
Ministerstvo Průmyslu a Obchodu
PubMed
33809870
PubMed Central
PMC8004110
DOI
10.3390/polym13060965
PII: polym13060965
Knihovny.cz E-zdroje
- Klíčová slova
- adhesion, composites, optimization, plasma treatment, polymer powders, rotomolding, testing method,
- Publikační typ
- časopisecké články MeSH
This paper describes a newly developed testing method for determination of the adhesivity of a film sintered from thermoplastic powder. This method is based on the modified EN 15337 standard. Application of this method enables an effective development of thermoplastic composites with enhanced adhesion between reinforcement and matrix and/or high-quality joints between plastics and dissimilar materials. The proposed method was successfully tested on a series of polyethylene powders treated in the oxygen atmosphere for 0-1200 s. Adhesion to metal and glass substrates in dependence on treatment conditions is described along with powder wettability and X-ray photoelectron spectroscopy analysis. The results show an increase in adhesion to metal by 580% and to glass by 1670% for the longest treatment time, compared to a nontreated powder. Sintering of treated powders revealed a strong influence of treatment time on the melting process. The XPS analysis confirmed the formation of new oxygen groups (C-O, C=O, O-C=O). The method reveals a specific behavior of powders based on treatment conditions, which is crucial for the optimization of plasma treatment for the improved adhesion, applicability of polymer powders, and a development of composite materials.
Zobrazit více v PubMed
Hancox N.L. Engineering mechanics of composite materials. Mater. Des. 1996;17:114. doi: 10.1016/S0261-3069(97)87195-6. DOI
Rajak D.K., Pagar D.D., Menezes P.L., Linul E. Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers. 2019;11:1667. doi: 10.3390/polym11101667. PubMed DOI PMC
Sherif G., Chukov D., Tcherdyntsev V., Torokhov V. Effect of formation route on the mechanical properties of the polyethersulfone composites reinforced with glass fibers. Polymers. 2019;11:1364. doi: 10.3390/polym11081364. PubMed DOI PMC
Sezemský J., Špatenka P. Adhesion improvement between pe and pa in multilayer rotational molding. Polymers. 2021;13:331. doi: 10.3390/polym13030331. PubMed DOI PMC
Hanana F.E., Chimeni D.Y., Rodrigue D. Morphology and mechanical properties of maple reinforced LLDPE produced by rotational moulding: Effect of fibre content and surface treatment. Polym. Polym. Compos. 2018;26:299–308. doi: 10.1177/096739111802600404. DOI
León L.D.V.E., Escocio V.A., Visconte L.L.Y., Junior J.C.J., Pacheco E.B.A.V. Rotomolding and polyethylene composites with rotomolded lignocellulosic materials: A review. J. Reinf. Plast. Compos. 2020;39:459–472. doi: 10.1177/0731684420916529. DOI
Cisneros-López E.O., González-López M.E., Pérez-Fonseca A.A., González-Núñez R., Rodrigue D., Robledo-Ortíz J.R. Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos. Interfaces. 2017;24:35–53. doi: 10.1080/09276440.2016.1184556. DOI
Höfler G., Jayaraman K., Lin R. Key Engineering Materials. Volume 809. Trans Tech Publications Ltd.; Baech, Switzerland: 2019. Rotational moulding and mechanical characterisation of micron-sized and nano-sized reinforced high density polyethylene; pp. 65–70. DOI
Wei H., Xia J., Zhou W., Zhou L., Hussain G., Li Q., Ostrikov K.K. Adhesion and cohesion of epoxy-based industrial composite coatings. Compos. Part B Eng. 2020;193:108035. doi: 10.1016/j.compositesb.2020.108035. DOI
Pereira P.H.F., De Rosa M.F., Cioffi M.O.H., De Benini K.C.C.C., Milanese A.C., Voorwald H.J.C., Mulinari D.R. Vegetal fibers in polymeric composites: A review. Polimeros. 2015;25:9–22. doi: 10.1590/0104-1428.1722. DOI
Barczewski M., Szostak M., Nowak D., Piasecki A. Effect of wood flour addition and modification of its surface on the properties of rotationally molded polypropylene composites. Polimery. 2018;63:772–784. doi: 10.14314/polimery.2018.11.5. DOI
Li R., Ye L., Mai Y.W. Application of plasma technologies in fibre-reinforced polymer composites: A review of recent developments. Compos. Part A Appl. Sci. Manuf. 1997;28:73–86. doi: 10.1016/S1359-835X(96)00097-8. DOI
Arpagaus C., Oberbossel G., von Rohr P.R. Plasma treatment of polymer powders-from laboratory research to industrial application. Plasma Process Polym. 2018;15:1800133. doi: 10.1002/ppap.201800133. DOI
SurfaceTreat-About Company. [(accessed on 20 February 2021)]; Available online: http://surfacetreat.cz/en/about-company/
Novacek V., Vackova T., Spatenka P., Jenikova Z. Proceedings-2017 International Conference on Optimization of Electrical and Electronic Equipment, Proceedings of the OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, Brasov, Romania, 2–4 September 2017. Institute of Electrical and Electronics Engineers Inc.; New York, NY, USA: 2017. Application of low temperature plasma treatment for thermoplastic composites; pp. 1027–1032. DOI
Sari P.S., Thomas S., Spatenka P., Ghanem Z., Jenikova Z. Effect of plasma modification of polyethylene on natural fibre composites prepared via rotational moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI
Horakova M., Spatenka P., Hladik J., Hornik J., Steidl J., Polachova A. Investigation of Adhesion Between Metal and Plasma-Modified Polyethylene. Plasma Process. Polym. 2011;8:983–988. doi: 10.1002/ppap.201100045. DOI
Šourková H., Špatenka P. Plasma Activation of Polyethylene Powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC
Alghunaim A., Kirdponpattara S., Newby B.M.Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 2016;287:201–215. doi: 10.1016/j.powtec.2015.10.002. DOI
Mozetič M. Surface Modification to Improve Properties of Materials. Materials. 2019;12:441. doi: 10.3390/ma12030441. PubMed DOI PMC
Yan W., Lin R.J.T., Bhattacharyya D. Particulate reinforced rotationally moulded polyethylene composites-Mixing methods and mechanical properties. Compos. Sci. Technol. 2006;66:2080–2088. doi: 10.1016/j.compscitech.2005.12.022. DOI
Crawford R.J., Kearns M.P. Practical Guide to Rotational Moulding. 2nd ed. Smithers Rapra; Shropshire, UK: 2012.
ISO Adhesives-Determination of tensile lap-shear strength of bonded assemblies (DIN EN 1465:2009-07) Int. Stand. ISO. 2009;11:778–794.
Scarselli G., Quan D., Murphy N., Deegan B., Dowling D., Ivankovic A. Adhesion Improvement of Thermoplastics-Based Composites by Atmospheric Plasma and UV Treatments. Appl. Compos. Mater. 2021;28:71–89. doi: 10.1007/s10443-020-09854-y. DOI
Kajihara Y., Tamura Y., Kimura F., Suzuki G., Nakura N., Yamaguchi E. Joining strength dependence on molding conditions and surface textures in blast-assisted metal-polymer direct joining. CIRP Ann. 2018;67:591–594. doi: 10.1016/j.cirp.2018.04.112. DOI
Ülker A., Ayaz A. Optimization of process parameters of friction stir spot welding of polycarbonate sheets and morphological analysis. Materwiss Werksttech. 2020;51:1640–1652. doi: 10.1002/mawe.202000066. DOI
Hladik J., Spatenka P., Aubrecht L., Pichal J. New method of microwave plasma treatment of HDPE powders. Czechoslov. J. Phys. 2006;56:B1120–B1125. doi: 10.1007/s10582-006-0337-6. DOI
Hladík J. Master’s Thesis. Technical University of Liberec; Liberec, Czech Republic: 2007. Aplikace Plazmových Technologií Pro Úpravy a Zušlechťování Povrchů Práškových Hmot.
ISO Paints and varnishes-Pull-off test for adhesion (ISO 4624:2002) Int. Stand. ISO. 2002;20:4624.
Barroso G., Döring M., Horcher A., Kienzle A., Motz G. Polysilazane-Based Coatings with Anti-Adherent Properties for Easy Release of Plastics and Composites from Metal Molds. Adv. Mater. Interfaces. 2020;7:1901952. doi: 10.1002/admi.201901952. DOI
Brinkhues S., Kanthamneni A., Brose A., Majcherek S., Schmidt B. Investigation of adhesion strength of metallization on thermoplastic and ceramic substrates; Proceedings of the 2016 12th International Congress Molded Interconnect Devices-Scientific Proceedings, MID 2016; Würzburg, Germany. 28–29 September 2016; DOI
Weberová Z. Low-Pressure Cold Plasma Surface Treatment for Adhesion Improvement in Composite Structures; Proceedings of the Annual Technical Conference Proceedings; Long Beach, CA, USA. 27 April–2 May 2019; Albuquerque, Mexico: Society of Vacuum Coaters; 2019. pp. 43–50. DOI
Weberová Z. Master’s Thesis. Czech Technical University; Prague, Czech Republic: 2019. Evaluation of Adhesion in Metal-Plastic Welded Joints.
ISO Adhesives-Determination of shear strength of anaerobic adhesives using pin-and-collar specimens (ISO 10123:1990 modified) Int. Stand. ISO. 2009;11:15.
Dow Chemical Company Technical Information: DowlexTM 2629UE Polyethylene Resin. [(accessed on 21 February 2021)]; Available online: https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/400/400-00089043en-dowlex-2629ue-tds.pdf.
LyondellBasell Industries Technical Information: ICORENE® 1613 BK85. [(accessed on 21 February 2021)]; Available online: https://plastics.ulprospector.com/datasheet/e139923/icorene-1613-bk85.
ISO Plastics—Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics (ISO 1133:2005) Int. Stand. ISO. 2005:1–12.
Šourková H., Primc G., Špatenka P. Surface functionalization of polyethylene granules by treatment with low-pressure air plasma. Materials. 2018;11:885. doi: 10.3390/ma11060885. PubMed DOI PMC
Washburn E.W. The dynamics of capillary flow. Phys. Rev. 1921;17:273–283. doi: 10.1103/PhysRev.17.273. DOI
Pandiyaraj K.N., Deshmukh R.R., Ruzybayev I., Shah S.I., Su P.G., Halleluyah M., Halim A.S. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE) Appl. Surf. Sci. 2014;307:109–119. doi: 10.1016/j.apsusc.2014.03.177. DOI
Jin S.Y., Manuel J., Zhao X., Park W.H., Ahn J.H. Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 2017;45:15–21. doi: 10.1016/j.jiec.2016.08.021. DOI
Abusrafa A.E., Habib S., Krupa I., Ouederni M., Popelka A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings. 2019;9:145. doi: 10.3390/coatings9020145. DOI
Yasuda H., Lamaze C.E., Sakaoku K. Effect of electrodeless glow discharge on polymers. J. Appl. Polym. Sci. 1973;17:137–152. doi: 10.1002/app.1973.070170111. DOI
Nandi S., Winter H.H. Swelling behavior of partially cross-linked polymers: A ternary system. Macromolecules. 2005;38:4447–4455. doi: 10.1021/ma048335e. DOI
Chang S., Kim M., Oh S., Min J.H., Kang D., Han C., Ahn T., Koh W.G., Lee H. Multi-scale characterization of surface-crosslinked superabsorbent polymer hydrogel spheres. Polymer. 2018;145:174–183. doi: 10.1016/j.polymer.2018.04.073. DOI
Kiran E., Zhuang W. Solubility of polyethylene in n-pentane at high pressures. Polymer. 1992;33:5259–5263. doi: 10.1016/0032-3861(92)90810-J. DOI
Ghanem Z., Sasidharan S.P., Jenikova Z., Špatenka P. Rotational molding of plasma treated polyethylene/short glass fiber composites. Int. J. Eng. Manag. Sci. 2019;4:103–108. doi: 10.21791/IJEMS.2019.4.11. DOI