Surface Functionalization of Polyethylene Granules by Treatment with Low-Pressure Air Plasma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29799443
PubMed Central
PMC6025483
DOI
10.3390/ma11060885
PII: ma11060885
Knihovny.cz E-zdroje
- Klíčová slova
- XPS, laser cobalt catalytic probe, low-pressure MW air plasma, optical emission spectroscopy, polyethylene granules,
- Publikační typ
- časopisecké články MeSH
Polyethylene granules of diameter 2 mm were treated with a low-pressure weakly ionized air plasma created in a metallic chamber by a pulsed microwave discharge of pulse duration 180 μs and duty cycle 70%. Optical emission spectroscopy showed rich bands of neutral nitrogen molecules and weak O-atom transitions, but the emission from N atoms was below the detection limit. The density of O atoms in the plasma above the samples was measured with a cobalt catalytic probe and exhibited a broad peak at the pressure of 80 Pa, where it was about 2.3 × 1021 m-3. The samples were characterized by X-ray photoelectron spectroscopy. Survey spectra showed oxygen on the surface, while the nitrogen concentration remained below the detection limit for all conditions. The high-resolution C1s peaks revealed formation of various functional groups rather independently from treatment parameters. The results were explained by extensive dissociation of oxygen molecules in the gaseous plasma and negligible flux of N atoms on the polymer surface.
Zobrazit více v PubMed
Vesel A., Mozetic M. New developments in surface functionalization of polymers using controlled plasma treatments. J. Phys. D Appl. Phys. 2017;50:293001. doi: 10.1088/1361-6463/aa748a. DOI
Gorjanc M., Mozetič M. Modification of Fibrous Polymers by Gaseous Plasma: Principles, Techniques and Applications. LAP Lambert Academic Publishing; Riga, Latvia: 2014.
Vukušić T., Vesel A., Holc M., Ščetar M., Jambrak A.R., Mozetič M. Modification of physico-chemical properties of acryl-coated polypropylene foils for food packaging by reactive particles from oxygen plasma. Materials. 2018;11:372. doi: 10.3390/ma11030372. PubMed DOI PMC
Orendáč M., Čižmár E., Kažiková V., Orendáčová A., Řezníčková A., Kolská Z., Švorčík V. Radicals mediated magnetism in Ar plasma treated high-density polyethylene. J. Magn. Magn. Mater. 2018;454:185–189. doi: 10.1016/j.jmmm.2018.01.087. DOI
Vartiainen J., Pasanen S., Kentt E., Vähä-Nissi M. Mechanical recycling of nanocellulose containing multilayer packaging films. J. Appl. Polym. Sci. 2018;135:46237. doi: 10.1002/app.46237. DOI
Zhao Z.P., Zhang A.S., Wang X.L., Lu P., Ma H.Y. Controllable modification of polymer membranes by LDDLT plasma flow: Grafting acidic ILs into PPF membrane for catalytic performance. J. Membr. Sci. 2018;553:99–110. doi: 10.1016/j.memsci.2018.02.044. DOI
Hu Z., Chng S., Liu Y., Moloney M.G., Parker E.M., Wu L.Y.L. One-step chemical functionalization of polyethylene surfaces via diarylcarbene insertion. Mater. Lett. 2018;218:157–160. doi: 10.1016/j.matlet.2018.01.166. DOI
Ozaltin K., Lehocky M., Humpolicek P., Vesela D., Mozetic M., Novak I., Saha P. Preparation of active antibacterial biomaterials based on sparfloxacin, enrofloxacin, and lomefloxacin deposited on polyethylene. J. Appl. Polym. Sci. 2018;135:46174. doi: 10.1002/app.46174. DOI
Muzammil I., Li Y.P., Li X.Y., Lei M.K. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane. Appl. Surf. Sci. 2018;436:411–418. doi: 10.1016/j.apsusc.2017.11.261. DOI
Van Vrekhem S., Vloebergh K., Asadian M., Vercruysse C., Declercq H., Van Tongel A., De Wilde L., De Geyter N., Morent R. Improving the surface properties of an UHMWPE shoulder implant with an atmospheric pressure plasma jet. Sci. Rep. 2018;8:4720. doi: 10.1038/s41598-018-22921-6. PubMed DOI PMC
Lindner M., Rodler N., Jesdinszki M., Schmid M., Sängerlaub S. Surface energy of corona treated PP, PE and PET films, its alteration as function of storage time and the effect of various corona dosages on their bond strength after lamination. J. Appl. Polym. Sci. 2018;135 doi: 10.1002/app.45842. DOI
Popelka A., Khanam P.N., Almaadeed M.A. Surface modification of polyethylene/graphene composite using corona discharge. J. Phys. D Appl. Phys. 2018;51:105302. doi: 10.1088/1361-6463/aaa9d6. DOI
Popelka A., Novák I., Al-Maadeed M.A.S.A., Ouederni M., Krupa I. Effect of corona treatment on adhesion enhancement of LLDPE. Surf. Coat. Technol. 2018;335:118–125. doi: 10.1016/j.surfcoat.2017.12.018. DOI
López-Santos C., Yubero F., Cotrino J., González-Elipe A.R. Nitrogen plasma functionalization of low density polyethylene. Surf. Coat. Technol. 2011;205:3356–3365. doi: 10.1016/j.surfcoat.2010.11.038. DOI
López-Santos C., Yubero F., Cotrino J., Barranco A., Gonzlez-Elipe A.R. Plasmas and atom beam activation of the surface of polymers. J. Phys. D Appl. Phys. 2008;41:225209. doi: 10.1088/0022-3727/41/22/225209. DOI
López-García J., Bílek F., Lehocký M., Junkar I., Mozetič M., Sowe M. Enhanced printability of polyethylene through air plasma treatment. Vacuum. 2013;95:43–49. doi: 10.1016/j.vacuum.2013.02.008. DOI
Oberbossel G., Güntner A.T., Kündig L., Roth C., Von Rohr P.R. Polymer powder treatment in atmospheric pressure plasma circulating fluidized bed reactor. Plasma Process. Polym. 2015;12:285–292. doi: 10.1002/ppap.201400124. DOI
Inagaki N., Tasaka S., Abe H. Surface modification of polyethylene powder using plasma reactor with fluidized bed. J. Appl. Polym. Sci. 1992;46:595–601. doi: 10.1002/app.1992.070460405. DOI
Park S.H., Kim S.D. Plasma surface treatment of HDPE powder in a fluidized bed reactor. Polym. Bull. 1994;33:249–256. doi: 10.1007/BF00297363. DOI
Mozetič M., Primc G., Vesel A., Zaplotnik R., Modic M., Junkar I., Recek N., Klanjšek-Gunde M., Guhy L., Sunkara M.K., et al. Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Sci. Technol. 2015;24:015026. doi: 10.1088/0963-0252/24/1/015026. DOI
Primc G., Mozetič M., Cvelbar U., Vesel A. Method and Device for Detection and Measuring the Density of Neutral Atoms of Hydrogen, Oxygen or Nitrogen. Application WO/2015/176733. WIPO Patent. 2015 Nov 26;
Zipf E.C. Measurement of the Diffusion Coefficient and Radiative Lifetime of Nitrogen Molecules in the A3Σu+ State. J. Chem. Phys. 1963;38:2034–2035. doi: 10.1063/1.1733921. DOI
Itikawa Y. Cross sections for electron collisions with nitrogen molecules. J. Phys. Chem. Ref. Data. 2006;35:31–53. doi: 10.1063/1.1937426. DOI
Ionin A.A., Kochetov I.V., Napartovich A.P., Yuryshev N.N. Physics and engineering of singlet delta oxygen production in low-temperature plasma. J. Phys. D Appl. Phys. 2007;40:25–61. doi: 10.1088/0022-3727/40/2/R01. DOI
Gorjanc M., Mozetič M., Vesel A., Zaplotnik R. Natural dyeing and UV protection of plasma treated cotton. Eur. Phys. J. D. 2018;72:41. doi: 10.1140/epjd/e2017-80680-9. DOI
Gorjanc M., Mozetič M., Primc G., Vesel A., Spasić K., Puač N., Petrović Z.L., Kert M. Plasma treated polyethylene terephthalate for increased embedment of UV-responsive microcapsules. Appl. Surf. Sci. 2017;419 doi: 10.1016/j.apsusc.2017.04.177. DOI
Altaweel A., Imam A., Ghanbaja J., Mangin D., Miska P., Gries T., Belmonte T. Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow. Nanotechnology. 2017;28:085602. doi: 10.1088/1361-6528/28/8/085602. PubMed DOI
Kutasi K., Noël C., Belmonte T., Guerra V. Tuning the afterglow plasma composition in Ar/N2/O2 mixtures: Characteristics of a flowing surface-wave microwave discharge system. Plasma Sources Sci. Technol. 2016;25 doi: 10.1088/0963-0252/25/5/055014. DOI
Gueye M., Gries T., Noël C., Migot-Choux S., Bulou S., Lecoq E., Choquet P., Belmonte T. Interaction of (3-Aminopropyl)triethoxysilane With Late Ar-N2 Afterglow: Application to Nanoparticles Synthesis. Plasma Process. Polym. 2016;13:698–710. doi: 10.1002/ppap.201500201. DOI
Gibson A.R., Foucher M., Marinov D., Chabert P., Gans T., Kushner M.J., Booth J.P. The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas. Plasma Phys. Control. Fusion. 2017;59:024004. doi: 10.1088/1361-6587/59/2/024004. DOI
Praveen K.M., Thomas S., Grohens Y., Mozetič M., Junkar I., Primc G., Gorjanc M. Investigations of plasma induced effects on the surface properties of lignocellulosic natural coir fibres. Appl. Surf. Sci. 2016;368:146–156. doi: 10.1016/j.apsusc.2016.01.159. DOI
Pashov A., Popov P., Knöckel H., Tiemann E. Spectroscopy of the a3∑u + state and the coupling to the X1∑g + state of K2. Eur. Phys. J. D. 2008;46:241–249. doi: 10.1140/epjd/e2007-00307-2. DOI
Ricard A., Oh S., Jang J., Kim Y.K. Quantitative evaluation of the densities of active species of N2 in the afterglow of Ar-embedded N2 RF plasma. Curr. Appl. Phys. 2015;15:1453–1462. doi: 10.1016/j.cap.2015.08.013. DOI
Quoc Toan Le Q.T., Pireaux J.J., Caudano R. XPS study of the PET film surface modified by CO2 plasma: Effects of the plasma parameters and ageing. J. Adhes. Sci. Technol. 1997;11:735–751. doi: 10.1163/156856197X00697. DOI
Arefi F., Andre V., Montazer-Rahmati P., Amouroux J. Plasma polymerization and surface treatment of polymers. Pure Appl. Chem. 1992;64:715–723. doi: 10.1351/pac199264050715. DOI
Vesel A., Mozetic M., Hladnik A., Dolenc J., Zule J., Milosevic S., Krstulovic N., Klanjek-Gunde M., Hauptmann N. Modification of ink-jet paper by oxygen-plasma treatment. J. Phys. D Appl. Phys. 2007;40:3689–3696. doi: 10.1088/0022-3727/40/12/022. DOI
O’Hare L.A., Leadley S., Parbhoo B. Surface physicochemistry of corona-discharge-treated polypropylene film. Surf. Interface Anal. 2002;33:335–342. doi: 10.1002/sia.1217. DOI
Kregar Z., Bišćan M., Miloševiá S., Mozetič M., Vesel A. Interaction of argon, hydrogen and oxygen plasma early afterglow with polyvinyl chloride(PVC) materials. Plasma Process. Polym. 2012;9:1020–1027. doi: 10.1002/ppap.201200062. DOI
Zaldivar R., Nokes J., Patel D.N., Morgan B.A., Steckel G., Kim H.I. Effect of using oxygen, carbon dioxide, and carbon monoxide as active gases in the atmospheric plasma treatment of fiber-reinforced polycyanurate composites. J. Appl. Polym. Sci. 2012;125:2510–2520. doi: 10.1002/app.36350. DOI
Abou Rich S., Dufour T., Leroy P., Reniers F., Nittler L., Pireaux J.J. LDPE surface modifications induced by atmospheric plasma torches with linear and showerhead configurations. Plasma Process. Polym. 2015;12:771–785. doi: 10.1002/ppap.201400097. DOI
Pandiyaraj K.N., Deshmukh R.R., Ruzybayev I., Shah S.I., Su P.G., Halleluyah M., Halim A.S. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE) Appl. Surf. Sci. 2014;307:109–119. doi: 10.1016/j.apsusc.2014.03.177. DOI
Bílek F., Křížová T., Lehocký M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI
Sanchis R., Fenollar O., García D., Sánchez L., Balart R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adhes. Adhes. 2008;28:445–451. doi: 10.1016/j.ijadhadh.2008.04.002. DOI
Vesel A. XPS study of surface modification of different polymer materials by oxygen plasma treatment. Inf. MIDEM. 2008;38:257–265.
Borcia G., Anderson C.A., Brown N.M.D. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Appl. Surf. Sci. 2004;221:203–214. doi: 10.1016/S0169-4332(03)00879-1. DOI
New Method for Optimization of Polymer Powder Plasma Treatment for Composite Materials