Enhanced Mechanical Properties of 3D-Printed Glass Fibre-Reinforced Polyethylene Composites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000010/13N
Czech Technological Agency
TN02000010/10-V1
Czech Technological Agency
CZ.02.2.69/0.0/0.0/18_053/ 0016980
European Social Fund Project
P2-0082
Slovenian Research Agency
J2-60037
Slovenian Research Agency
PubMed
40362938
PubMed Central
PMC12073711
DOI
10.3390/polym17091154
PII: polym17091154
Knihovny.cz E-zdroje
- Klíčová slova
- 3D print, adhesion, plasma modification, polyethylene,
- Publikační typ
- časopisecké články MeSH
Optimisation of the tensile strength of thermoplastic polymer-matrix composites remains a scientific as well as technological challenge for 3D printing technology due to the mass application of composite materials. Inadequate mechanical properties are due to the mismatch in the surface energies of the polymer and fillers. In this study, an additively manufactured composite was 3D-printed and tested. The composite consisted of a linear low-density polyethylene matrix filled with glass fibres. Composite filaments were extruded from neat and plasma-treated polymer powders. Plasma was sustained in oxygen at 100 Pa by a pulsed microwave discharge, and 250 g of polymer powder of average diameter 150 µm was placed into a dish and stirred during the plasma treatment. The O-atom density at the position of the dish containing polymer powder was about 2 × 1021 m-3, and the treatment time was varied up to 30 min. A gradual improvement in the composites' tensile and flexural strength was observed at the plasma treatment time up to about 10 min, and the mechanical properties remained unchanged with prolonged treatment time. The tensile strength of composites prepared from plasma-treated polymer increased by one-third compared to those based on untreated powder. However, reinforcing the modified polyethylene with plasma-treated glass fibres did not result in further significant mechanical improvement compared to untreated fibres. In contrast, strength values doubled using glass fibres with silane sizing in combination with plasma-modified matrix. The results were explained by the increased surface energy of the polymer powder due to functionalisation with polar functional groups during plasma treatment.
Zobrazit více v PubMed
Christakopoulos F., Van Heugten P.M.H., Tervoort T.A. Additive Manufacturing of Polyolefins. Polymers. 2022;14:5147. doi: 10.3390/polym14235147. PubMed DOI PMC
Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material Extrusion-based Additive Manufacturing of Polypropylene: A Review on How to Improve Dimensional Inaccuracy and Warpage. J. Appl. Polym. Sci. 2020;137:48545. doi: 10.1002/app.48545. DOI
Das A., Bryant J.S., Williams C.B., Bortner M.J. Melt-Based Additive Manufacturing of Polyolefins Using Material Extrusion and Powder Bed Fusion. Polym. Rev. 2023;63:895–960. doi: 10.1080/15583724.2023.2220024. DOI
Li J., Durandet Y., Huang X., Sun G., Ruan D. Additively Manufactured Fiber-Reinforced Composites: A Review of Mechanical Behavior and Opportunities. J. Mater. Sci. Technol. 2022;119:219–244. doi: 10.1016/j.jmst.2021.11.063. DOI
Carneiro O.S., Silva A.F., Gomes R. Fused Deposition Modeling with Polypropylene. Mater. Des. 2015;83:768–776. doi: 10.1016/j.matdes.2015.06.053. DOI
Sam-Daliri O., Ghabezi P., Steinbach J., Flanagan T., Finnegan W., Mitchell S., Harrison N. Experimental Study on Mechanical Properties of Material Extrusion Additive Manufactured Parts from Recycled Glass Fibre-Reinforced Polypropylene Composite. Compos. Sci. Technol. 2023;241:110125. doi: 10.1016/j.compscitech.2023.110125. DOI
Olesik P., Godzierz M., Kozioł M. Preliminary Characterization of Novel LDPE-Based Wear-Resistant Composite Suitable for FDM 3D Printing. Materials. 2019;12:2520. doi: 10.3390/ma12162520. PubMed DOI PMC
Spoerk M., Arbeiter F., Raguž I., Weingrill G., Fischinger T., Traxler G., Schuschnigg S., Cardon L., Holzer C. Polypropylene Filled with Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature. Macromol. Mater. Eng. 2018;303:1800179. doi: 10.1002/mame.201800179. DOI
Spoerk M., Savandaiah C., Arbeiter F., Traxler G., Cardon L., Holzer C., Sapkota J. Anisotropic Properties of Oriented Short Carbon Fibre Filled Polypropylene Parts Fabricated by Extrusion-Based Additive Manufacturing. Compos. Part A Appl. Sci. Manuf. 2018;113:95–104. doi: 10.1016/j.compositesa.2018.06.018. DOI
Casamento F., Padovano E., Pappalardo S., Frache A., Badini C. Development of Polypropylene-Based Composites through Fused Filament Fabrication: The Effect of Carbon-Based Fillers. Compos. Part A Appl. Sci. Manuf. 2023;164:107308. doi: 10.1016/j.compositesa.2022.107308. DOI
Beesetty P., Kale A., Patil B., Doddamani M. Mechanical Behavior of Additively Manufactured Nanoclay/HDPE Nanocomposites. Compos. Struct. 2020;247:112442. doi: 10.1016/j.compstruct.2020.112442. DOI
Bertolino M., Battegazzore D., Arrigo R., Frache A. Designing 3D Printable Polypropylene: Material and Process Optimisation through Rheology. Addit. Manuf. 2021;40:101944. doi: 10.1016/j.addma.2021.101944. DOI
Zander N.E., Park J.H., Boelter Z.R., Gillan M.A. Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. ACS Omega. 2019;4:13879–13888. doi: 10.1021/acsomega.9b01564. PubMed DOI PMC
Wang L., Palmer J., Tajvidi M., Gardner D.J., Han Y. Thermal Properties of Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites from Extrusion-Based Additive Manufacturing. J. Therm. Anal. Calorim. 2019;136:1069–1077. doi: 10.1007/s10973-018-7759-9. DOI
Milosevic M., Stoof D., Pickering K. Characterizing the Mechanical Properties of Fused Deposition Modelling Natural Fiber Recycled Polypropylene Composites. J. Compos. Sci. 2017;1:7. doi: 10.3390/jcs1010007. DOI
Filgueira D., Holmen S., Melbø J., Moldes D., Echtermeyer A., Chinga-Carrasco G. 3D Printable Filaments Made of Biobased Polyethylene Biocomposites. Polymers. 2018;10:314. doi: 10.3390/polym10030314. PubMed DOI PMC
Tarrés Q., Melbø J.K., Delgado-Aguilar M., Espinach F.X., Mutjé P., Chinga-Carrasco G. Bio-Polyethylene Reinforced with Thermomechanical Pulp Fibers: Mechanical and Micromechanical Characterization and Its Application in 3D-Printing by Fused Deposition Modelling. Compos. Part B Eng. 2018;153:70–77. doi: 10.1016/j.compositesb.2018.07.009. DOI
Stoof D., Pickering K. Sustainable Composite Fused Deposition Modelling Filament Using Recycled Pre-Consumer Polypropylene. Compos. Part B Eng. 2018;135:110–118. doi: 10.1016/j.compositesb.2017.10.005. DOI
McGauran T., Dunne N., Smyth B.M., Cunningham E. Incorporation of Poultry Eggshell and Litter Ash as High Loading Polymer Fillers in Polypropylene. Compos. Part C Open Access. 2020;3:100080. doi: 10.1016/j.jcomc.2020.100080. DOI
McGauran T., Harris M., Dunne N., Smyth B.M., Cunningham E. Development and Optimisation of Extruded Bio-Based Polymers from Poultry Feathers. Eur. Polym. J. 2021;158:110678. doi: 10.1016/j.eurpolymj.2021.110678. DOI
Vesel A., Primc G., Zaplotnik R., Mozetič M. Applications of Highly Non-Equilibrium Low-Pressure Oxygen Plasma for Treatment of Polymers and Polymer Composites on an Industrial Scale. Plasma Phys. Control. Fusion. 2020;62:024008. doi: 10.1088/1361-6587/ab5b50. DOI
Booth J.-P., Mozetič M., Nikiforov A., Oehr C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022;31:103001. doi: 10.1088/1361-6595/ac70f9. DOI
Primc G. Generation of Neutral Chemically Reactive Species in Low-Pressure Plasma. Front. Phys. 2022;10:895264. doi: 10.3389/fphy.2022.895264. DOI
Popović D., Mozetič M., Vesel A., Primc G., Zaplotnik R. Review on Vacuum Ultraviolet Generation in Low-pressure Plasmas. Plasma Process. Polym. 2021;18:2100061. doi: 10.1002/ppap.202100061. DOI
Lojen D., Zaplotnik R., Primc G., Mozetič M., Vesel A. Optimization of Surface Wettability of Polytetrafluoroethylene (PTFE) by Precise Dosing of Oxygen Atoms. Appl. Surf. Sci. 2022;598:153817. doi: 10.1016/j.apsusc.2022.153817. DOI
Vesel A., Zaplotnik R., Mozetič M., Primc G. Surface Modification of PS Polymer by Oxygen-Atom Treatment from Remote Plasma: Initial Kinetics of Functional Groups Formation. Appl. Surf. Sci. 2021;561:150058. doi: 10.1016/j.apsusc.2021.150058. DOI
Píchal J., Hladík J., Špatenka P. Atmospheric-Air Plasma Surface Modification of Polyethylene Powder. Plasma Process. Polym. 2009;6:148–153. doi: 10.1002/ppap.200800080. DOI
Vandencasteele N., Reniers F. Plasma-Modified Polymer Surfaces: Characterization Using XPS. J. Electron Spectrosc. Relat. Phenom. 2010;178–179:394–408. doi: 10.1016/j.elspec.2009.12.003. DOI
Mozetič M. Aging of Plasma-Activated Polyethylene and Hydrophobic Recovery of Polyethylene Polymers. Polymers. 2023;15:4668. doi: 10.3390/polym15244668. PubMed DOI PMC
Liu Z., Tang C., Chen P., Yu Q., Li W. Modification of Carbon Fiber by Air Plasma and Its Adhesion with BMI Resin. RSC Adv. 2014;4:26881. doi: 10.1039/c4ra01835d. DOI
Lee H.S., Kim S., Noh Y.J., Kim S.Y. Design of Microwave Plasma and Enhanced Mechanical Properties of Thermoplastic Composites Reinforced with Microwave Plasma-Treated Carbon Fiber Fabric. Compos. Part B Eng. 2014;60:621–626. doi: 10.1016/j.compositesb.2013.12.064. DOI
Lee Y.M., You J., Kim M., Kim T.A., Lee S.-S., Bang J., Park J.H. Highly Improved Interfacial Affinity in Carbon Fiber-Reinforced Polymer Composites via Oxygen and Nitrogen Plasma-Assisted Mechanochemistry. Compos. Part B Eng. 2019;165:725–732. doi: 10.1016/j.compositesb.2019.02.021. DOI
Zaldivar R.J., Kim H.I., Steckel G.L., Nokes J.P., Morgan B.A. Effect of Processing Parameter Changes on the Adhesion of Plasma-Treated Carbon Fiber Reinforced Epoxy Composites. J. Compos. Mater. 2010;44:1435–1453. doi: 10.1177/0021998309355846. DOI
Ma K., Chen P., Wang B., Cui G., Xu X. A Study of the Effect of Oxygen Plasma Treatment on the Interfacial Properties of Carbon Fiber/Epoxy Composites. J. Appl. Polym. Sci. 2010;118:1606–1614. doi: 10.1002/app.32549. DOI
Baghery Borooj M., Mousavi Shoushtari A., Haji A., Nosratian Sabet E. Optimization of Plasma Treatment Variables for the Improvement of Carbon Fibres/Epoxy Composite Performance by Response Surface Methodology. Compos. Sci. Technol. 2016;128:215–221. doi: 10.1016/j.compscitech.2016.03.020. DOI
Yoozbashizadeh M., Chartosias M., Victorino C., Decker D. Investigation on the Effect of Process Parameters in Atmospheric Pressure Plasma Treatment on Carbon Fiber Reinforced Polymer Surfaces for Bonding. Mater. Manuf. Process. 2019;34:660–669. doi: 10.1080/10426914.2019.1566613. DOI
Dighton C., Rezai A., Ogin S.L., Watts J.F. Atmospheric Plasma Treatment of CFRP Composites to Enhance Structural Bonding Investigated Using Surface Analytical Techniques. Int. J. Adhes. Adhes. 2019;91:142–149. doi: 10.1016/j.ijadhadh.2019.03.010. DOI
Yildirim C., Ulus H., Beylergil B., Al-Nadhari A., Topal S., Yildiz M. Effect of Atmospheric Plasma Treatment on Mode-I and Mode-II Fracture Toughness Properties of Adhesively Bonded Carbon Fiber/PEKK Composite Joints. Eng. Fract. Mech. 2023;289:109463. doi: 10.1016/j.engfracmech.2023.109463. DOI
Yuan X., Jayaraman K., Bhattacharyya D. Effects of Plasma Treatment in Enhancing the Performance of Woodfibre-Polypropylene Composites. Compos. Part A Appl. Sci. Manuf. 2004;35:1363–1374. doi: 10.1016/j.compositesa.2004.06.023. DOI
Han S.H., Oh H.J., Kim S.S. Evaluation of Fiber Surface Treatment on the Interfacial Behavior of Carbon Fiber-Reinforced Polypropylene Composites. Compos. Part B Eng. 2014;60:98–105. doi: 10.1016/j.compositesb.2013.12.069. DOI
Xie J., Xin D., Cao H., Wang C., Zhao Y., Yao L., Ji F., Qiu Y. Improving Carbon Fiber Adhesion to Polyimide with Atmospheric Pressure Plasma Treatment. Surf. Coat. Technol. 2011;206:191–201. doi: 10.1016/j.surfcoat.2011.04.016. DOI
Corral F.S., Nava L.A.C., Hernández E.H., Gámez J.F.H., Velázquez M.G.N., Sierra M.I.M., Morones P.G., Gómez R.E.D.D.L. Plasma Treatment of Agave Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene. Int. J. Polym. Sci. 2016;2016:1–7. doi: 10.1155/2016/2807915. DOI
Couto E., Tan I.H., Demarquette N., Caraschi J.C., Leão A. Oxygen Plasma Treatment of Sisal Fibers and Polypropylene: Effects on Mechanical Properties of Composites. Polym. Eng. Sci. 2002;42:790–797. doi: 10.1002/pen.10991. DOI
Anjumol K.S., Sumesh K.R., Vackova T., Hanna J.M., Thomas S., Spatenka P. Effect of Plasma Treatment on the Morphology, Mechanical, and Wetting Properties of Polyethylene/Banana Fiber Composites. Biomass Conv. Bioref. 2024;14:30239–30250. doi: 10.1007/s13399-023-04884-5. DOI
Sari P.S., Thomas S., Spatenka P., Ghanam Z., Jenikova Z. Effect of Plasma Modification of Polyethylene on Natural Fibre Composites Prepared via Rotational Moulding. Compos. Part B Eng. 2019;177:107344. doi: 10.1016/j.compositesb.2019.107344. DOI
Sumesh K.R., Ghanem Z., Spatenka P., Jenikova Z. Investigating the Influence of Plasma Treated Polyethylene Powder, Carbon Fibers in Enhancing the Mechanical Properties of Polymer Composites Using Rotomoulding Method. Polym. Compos. 2023;44:1004–1016. doi: 10.1002/pc.27150. DOI
Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2022.
Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International; West Conshohocken, PA, USA: 2017.
Šourková H., Primc G., Špatenka P. Surface Functionalization of Polyethylene Granules by Treatment with Low-Pressure Air Plasma. Materials. 2018;11:885. doi: 10.3390/ma11060885. PubMed DOI PMC
Paul D., Mozetic M., Zaplotnik R., Primc G., Đonlagić D., Vesel A. A Review of Recombination Coefficients of Neutral Oxygen Atoms for Various Materials. Materials. 2023;16:1774. doi: 10.3390/ma16051774. PubMed DOI PMC
Zhang Y., Ishikawa K., Mozetič M., Tsutsumi T., Kondo H., Sekine M., Hori M. Polyethylene Terephthalate (PET) Surface Modification by VUV and Neutral Active Species in Remote Oxygen or Hydrogen Plasmas. Plasma Process. Polym. 2019;16:1800175. doi: 10.1002/ppap.201800175. DOI
Verma N., Awasthi P., Gupta A., Banerjee S.S. Fused Deposition Modeling of Polyolefins: Challenges and Opportunities. Macromol. Mater. Eng. . 2023;308:2200421. doi: 10.1002/mame.202200421. DOI
Jeyachandran P., Bontha S., Bodhak S., Balla V.K., Doddamani M. Material Extrusion Additive Manufacturing of Bioactive Glass/High Density Polyethylene Composites. Compos. Sci. Technol. 2021;213:108966. doi: 10.1016/j.compscitech.2021.108966. DOI
Bell C.A. Maintaining and Troubleshooting Your 3D Printer: Properly Maintain and Enhance Your Investment in Personal Fabrication. Apress; Berkeley, CA, USA: 2014. Technology in Action.
Gilmer E.L., Miller D., Chatham C.A., Zawaski C., Fallon J.J., Pekkanen A., Long T.E., Williams C.B., Bortner M.J. Model Analysis of Feedstock Behavior in Fused Filament Fabrication: Enabling Rapid Materials Screening. Polymer. 2018;152:51–61. doi: 10.1016/j.polymer.2017.11.068. DOI
Šourková H., Špatenka P. Plasma Activation of Polyethylene Powder. Polymers. 2020;12:2099. doi: 10.3390/polym12092099. PubMed DOI PMC
Cech V., Prikryl R., Balkova R., Grycova A., Vanek J. Plasma Surface Treatment and Modification of Glass Fibers. Compos. Part A Appl. Sci. Manuf. 2002;33:1367–1372. doi: 10.1016/S1359-835X(02)00149-5. DOI
Dul S., Fambri L., Pegoretti A. High-Performance Polyamide/Carbon Fiber Composites for Fused Filament Fabrication: Mechanical and Functional Performances. J. Mater. Eng. Perform. 2021;30:5066–5085. doi: 10.1007/s11665-021-05635-1. DOI
Li X., He J., Hu Z., Ye X., Wang S., Zhao Y., Wang B., Ou Y., Zhang J. High Strength Carbon-Fiber Reinforced Polyamide 6 Composites Additively Manufactured by Screw-Based Extrusion. Compos. Sci. Technol. 2022;229:109707. doi: 10.1016/j.compscitech.2022.109707. DOI
Kim D.-K., Han W., Kim K.-W., Kim B.-J. Enhanced Interfacial Properties of Carbon Fiber/Maleic Anhydride-Grafted Polypropylene Composites via Two-Step Surface Treatment: Electrochemical Oxidation and Silane Treatment. Polymers. 2023;15:3784. doi: 10.3390/polym15183784. PubMed DOI PMC
Weberová Z., Šourková H., Antoň J., Vacková T., Špatenka P. New Method for Optimization of Polymer Powder Plasma Treatment for Composite Materials. Polymers. 2021;13:965. doi: 10.3390/polym13060965. PubMed DOI PMC