3D print Dotaz Zobrazit nápovědu
Článok prináša pohľad do oblasti skenovania tváre v ortodoncii ako aj fúzie takéhoto 3D záznamu s celohlavovým CBCT iCAT™ skenom. Autor popisuje vlastné skúsenosti s 3D tlačou takéhoto kombinovaného modelu a orientačne posudzuje presnosi reprodukcie medzi reálnym modelom, virtuálnym 3D modelom a vytlačeným modelom. Vysvetľuje tiež princípy a rozdiely medzi aktívnou a pasívnou stereofotogrametriou a tiež porovnáva skúsenosti medzi jednotlivými stereoskopickými kamerami: 3DMD TM, 3D-Shape™ a D/3D™. Článok tiež venuje pozornosí perspektívam klinického využitia uvedených technologických postupov.
The article reviews the face-scanning procedures and technologies in orthodontics, as well as the fusion of such face-scans with CBCT iCAT TM scans. The author gives his own experience with 3D print of the fused face-CBCT model, and evaluates in brief the accuracy of a reproduction in vivo, a virtual 3D model, and a printed 3D model. The basic principles and differences between active and passive stereophotogrammetry are explained, and the experience with different stereoscopic cameras 3DMD TM, 3D-Shape TM, and Dl3D TM is discussed. The article also gives the current view on perspectives and the use of the technologies described in clinical orthodontics.
Článok predstavuje a hodnotí prelomové technologické postupy v ortodoncii: skutočný a pseudo 3D záznam, ich spracovanie a vizualizácie. Popisuje postup od celohlavového záznamu CBCT iCAT cez export do stereolitografického formátu (STL) až po jeho 3D tlač. Článok hodnotí možnosti manipulácie s týmto 3D záznamom a tiež sa detailnejšie sa venuje téme „rapid prototypingu" a perspektívam klinického využitia rôznych variant 3D tlače vrátane tlače biokompatibilnými materiálmi, napríklad titánom (AM/ EMB).
The article introduces and reviews revolutionary technologies and procedures in orthodontics: true ar pseudo 3D record, its processing and visualization. In particular, it describes procedure from CBCT iCATTM scanning through its export to stereolithographic (STL) format and final 3D print. In addition, the article reviews possibilities of 3D CBCT volume and brings the current view on rapid prototyping and perspectives of various 3D print techniques in clinical orthodontics including printing by biocompatible materials like titanium (AM/EBM).
Úvod a cíl: Množství publikací a investic do 3D tisku jsou důkazem nárůstu zájmu o tuto výrobní metodu. Za objevitele s prvním patentem v oboru se považuje Američan Charles W. Hull. Principem 3D tisku je tisk žádaného předmětu ve vrstvách na základě jeho předlohy, nejčastěji ve formátu .stl (stereolitografie). Existuje sedm základních technologických procesů tisku, pět z nich má využití v zubním lékařství. Text se blíže zabývá třemi nejčastěji využívanými metodami Vat Polymerisation, Material Extrusion a Powder Bed Fusion. Ve stomatologii má strojová aditivní výroba významnou úlohu již delší dobu. Zejména v implantologii pro tisk chirurgických šablon a v ortodoncii pro tisk studijních modelů a takzvaných neviditelných rovnátek. Aditivní výroba umožňuje také tisk retenčních aparátů a usnadňuje autotransplantace zubů, přičemž postupně získává na důležitosti i v jiných sektorech stomatologie, jako v konzervačním zubním lékařství při dostavbě IV. Blackovy třídy, v navigované endodoncii a také v protetickém zubním lékařství při tisku kovových konstrukcí a dalších komponent, ať již ve fixní, nebo snímatelné protetice v zubní laboratoři. Mezi aktuální aplikace patří také tisk příslušenství, jako například ochranných masek a štítů, nebo tisk 3D modelů skutečných zubů a demonstračních modelů za účelem zlepšení pregraduálního, postgraduálního a kontinuálního vzdělávání. V medicíně se tisk používá například pro výrobu biomateriálů. Využití je tedy rozsáhlé a vliv 3D tisku na stomatologii nezpochybnitelný. Nedostatky tisku jsou podrobovány neustálému výzkumu a je tedy jenom otázka, kdy a do jaké míry nahradí konvenční postupy. Cílem tohoto přehledového článku bylo roztřídit základní informace o 3D tisku týkající se jeho historie, principu a typech tisku, ale hlavně shrnout jeho užití v zubním lékařství.
Introduction, aim: The rise of research papers and investments made into 3D printing are the proof of the increased interest about this manufacturing method. The American Charles W. Hull is considered to be the inventor with the first patent in the field. The principle of 3D printing is printing the desired item in layers according to its template, most often present in .stl format. There are seven main technological processes of 3D printing, five of them are used in dentistry. Text deals with the three methods that are used the most: Vat Polymerisation, Material Extrusion and Powder Bed Fusion. In dentistry, additive manufacturing already has an important role for a longer period of time especially in implantology for the printing of surgical guides and in orthodontics for printing of study models and so-called invisible aligners. Additive manufacturing also allows to print retention appliances, and it facilitates the autotransplantation of teeth, while its importance is slowly rising in other sectors of dentistry such as in conservative dentistry in Class IV reconstruction or in guided endodontics and in prosthetic dentistry for printing of metal substructures and other components either in fixed or removable prosthetics in dental laboratory. Printing of accessories such as protective masks and face-shields or printing of 3D models of the real teeth and demonstration models in order to improve undergraduate, postgraduate and continuous education are among current applications. In medicine the printing is used for example for the production of biomaterials. The range of applications is therefore vast and the impact of 3D printing on dentistry is unquestionable. Shortcomings of printing are undergoing constant research and therefore it is just a matter of time until 3D printing will replace the conventional methods. The objective of this review paper was to sort the basic information about 3D printing with regards to its history, principle and types of printing but more importantly to summarise its use in dentistry.
- MeSH
- 3D tisk * MeSH
- lidé MeSH
- zobrazování trojrozměrné MeSH
- zubní implantáty MeSH
- zubní modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Tkáňové expandéry jsou od osmdesátých let 20. století akceptovanou chirurgickou technikou v řešení traumatických, pooperačních a jiných defektů nebo nedostatku tkání. Ve vlasaté části hlavy se zavádí buď podkožně, nebo subgaleárně nad periost, a umožňují tak získat kožní lalok včetně vlasových folikulů. Jednou z největších komplikací je špatný výběr místa pro tkáňový expandér. Na kazuistice ukazujeme, že k plánování jeho vhodného umístění může pomoci 3D rekonstrukce z CT a následně 3D tisk.
Tissue expanders have been an accepted surgical technique in the treatment of traumatic, post-operative and other defects and loss of tissue since the 1980s. The expander is inserted in the hairy part of the scalp either subcutaneously or subgaleally above the periosteum, thus enabling the skin lobe, including hair follicles, to develop normally. One of the major complications is the poor choice of location for the tissue expander. In the case report, we will present that 3D modeling from CT and subsequent 3D printing can help to plan its most suitable location.
- MeSH
- 3D tisk MeSH
- bazocelulární karcinom chirurgie MeSH
- lidé středního věku MeSH
- lidé MeSH
- skalp chirurgie MeSH
- tkáňové expandéry * MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
Moderní technologie nacházejí stále větší využití i v medicíně a zkracuje se čas, za který se etablují jako její plnohodnotné součásti. Je to vidět právě na 3D tisku, kdy za poměrně krátkou dobu od přihlášení patentu je již nedílnou komponentou celé řady lékařských oborů, včetně ORL, maxilofaciální a plastické chirurgie. Jejímu rozšíření výrazně napomáhá pokles pořizovacích nákladů tiskáren a používaných materiálů, včetně dostupnosti software. Další výhodou je zvyšující se počet absolventů oboru biomedicínský inženýr, kteří pomáhají lékařům s vlastní přípravou modelů a následně s jejich tiskem. Dne 17. 6. 2023 přijala Česká lékařská společnost J. E. Purkyně nově vzniklou „Českou společnost pro 3D tisk v medicíně“ jako svou organizační složku. Jejím cílem je napomáhat rozvoji 3D tisku v medicíně, nastavit standardy využití a garantovat jejich dodržování. Přehledový článek uvádí praktické příklady využití 3D tisku v otorinolaryngologii, maxilofaciální a plastické chirurgii.
Modern technologies are increasingly finding their place in medicine, rapidly establishing as invaluable assets. This is evident in 3D printing, which in a relatively short time, has become an integral part of numerous medical fields including ENT, Maxillofacial and Plastic surgery. Its expansion is substantially facilitated by the decrease in the acquisition costs of printers and used materials, including software availability. Another advantage is the increasing number of graduated biomedical engineers who assist doctors in preparing and printing their models. On June 17, 2023, the Czech Medical Society of J. E. Purkyně accepted the newly established „Czech Society for 3D Printing in Medicine“ as its organizational component. Its objective is to help the development of 3D printing in medicine, and to set standards of use and adherence. This article presents practical examples of the use of 3D printing in Otorhinolaryngology, Maxillofacial and Plastic surgery.
- MeSH
- 3D tisk * klasifikace MeSH
- hlava * chirurgie diagnostické zobrazování MeSH
- krk * chirurgie diagnostické zobrazování MeSH
- lidé MeSH
- ortognátní chirurgické výkony klasifikace metody MeSH
- zákroky plastické chirurgie klasifikace metody MeSH
- zobrazování trojrozměrné klasifikace metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Úvod a cíl: Modely chrupu jsou ve stomatologii široce používanou pomůckou. Přenos situace v ústní dutině mimo ústa pacienta ve formě modelů chrupu nám přináší informace v oblasti diagnostiky, plánování způsobu léčby a pro plánování výroby stomatologických produktů. Modely chrupu lze využít v každém stomatologickém oboru. Zcela neodmyslitelně jsou spjaty s protetikou, ortodoncií a maxilofaciální chirurgií. Cílem tohoto přehledového článku je seznámit čtenáře s přínosy intraorálního skenování ve spojení s 3D tiskem. Dále popsat jejich základní principy a prezentovat nejvýhodnější technologie 3D tisku pro výrobu stomatologických produktů z poznatků dostupných v současné literatuře. Materiál a metodika: Vyhledání a průzkum literatury byly zaměřeny na intraorální skenování a 3D tisk. Použity byly databáze PubMed, Scopus a Ebsco. Pro následné zařazení do přehledu byla zásadní aplikovatelnost ve stomatologii, zahrnutí kontrolní skupiny a stáří článku do pěti let. Závěr: Ze zpracovaných studií vyplývá, že technologie přímého intraorálního skenování a 3D tisku jsou již dnes dobře klinicky použitelné a v budoucnosti lze očekávat jejich další rozvoj pro užívání v každodenní praxi.
Introduction and aim: Dental models are widely used in dentistry. The transmission of oral cavity situation outside patient's mouth brings us information in the field of diagnostics, treatment planning, and the fabrication planning of dental products. Dental models can be used in any dental field. They are particularly linked to prosthodontics, orthodontics, and maxillofacial surgery. The aim of this article is to report the benefits of the intraoral scanning in conjuction with 3D printing to the reader. Also, it describes their basic principles and presents the most useful technologies of 3D printing for production in dentistry according to the current literature. Materials and methods: The literature search and survey were focused on intraoral scanning and 3D printing. PubMed, Scopus, and Ebsco databases were used to find the articles. Their applicability in dentistry, the inclusion of a control group, and the age of the article within five years were essential for their subsequent selection. Conclusion: The included studies show that the technologies of direct intraoral scanning and 3D printing are already clinically usable today, and in the future we can expect their further development for everyday practice.
3D printing is a rapidly growing technology. Besides its general industrial application, it is also applicable in manufacturing of dosage forms. Due to its inherent flexibility, it is predetermined to be used as an advantageous manufacturing tool in the clinical phases of the drug development and in the individualized pharmacotherapy. Properties of drug dosage forms, such as the size of the dose, the type of the release mechanism, the shape and colour, can easily be modified and the final form can be produced quickly in small batches. It is also possible to prepare dosage forms with properties unattainable by classic manufacturing.
Cíl: Cílem této práce bylo zhodnocení našich zkušeností s metodou 3D tisku v neurochirurgii. Vedle známé tvorby kraniálních implantátů je možné mnohem širší využití této moderní, rychle se rozvíjející technologie. Metodika: Představujeme a hodnotíme soubor našich deseti pacientů, kteří byli operováni s využitím metody 3D tisku. V oblasti cévní neurochirurgie se jednalo ve čtyřech případech o model mozkového aneuryzmatu a o jeden model arteriovenózních malformací. U dvou pacientů metoda přispěla k uzavření defektu lební baze „na míru“ tvarovanou mřížkou a v neuroonkologii u dvou pacientů zlepšila naši představu o pozici nádorů lební baze. U jednoho pacienta 3D model obratle C2 umožnil volbu optimální trajektorie fixačního materiálu. Výsledky: Ve zmíněných případech bylo dosaženo požadovaného výsledku a u všech pacientů metoda 3D tisku přispěla ke správnému ošetření. Závěr: Na základě našich zkušeností si dovolujeme konstatovat, že kromě již běžně využívané 3D implantologie metoda 3D tisku představuje zajímavou a inovativní modalitu v oblastech neurochirurgického plánování, simulace a tréninku. Předpokládáme, že se bude stále více uplatňovat v mnoha oblastech neurochirurgie.
Aim: The aim of this work was to evaluate our experience with the 3D printing method in neurosurgery. In addition to the well-known utilization of cranial implants, a significant use of this modern, rapidly developing technology is possible. Methods: We present and evaluate the series of our ten patients, which we operated on using 3D printing methods. In the field of vascular neurosurgery, four cases involved a brain aneurysm model and one arteriovenous malformation model. In two patients, this method contributed to the closure of the skull base defect with a custom-shaped cranial grid and in neuro-oncology, it improved the visualization of skull base tumors in two patients. In one patient, the 3D model of the C2 vertebra allowed the choice of the optimal trajectory of the fixation material. Results: In the mentioned cases, the desired result was achieved and the 3D printing method was adapted to the correct treatment in all patients. Conclusion: Based on our experiences, we can claim that the 3D printing method, in addition to the already commonly used 3D implantology, also presents a new and interesting modality in the field of neurosurgical planning, simulation and training. We assume that it will be increasingly used in many areas of neurosurgery.
- MeSH
- 3D tisk * přístrojové vybavení MeSH
- dospělí MeSH
- intrakraniální aneurysma chirurgie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci centrálního nervového systému chirurgie diagnostické zobrazování MeSH
- neurochirurgie * metody trendy MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- klinická studie MeSH
- práce podpořená grantem MeSH
Skeletální traumatologie prošla ve světě v poslední dekádě revolučními změnami v souvislosti s rozvojem technologií 3D tisku. Tento přehledový článek má za cíl přinést ucelený přehled o tom, jakým způsobem 3D tisk transformuje oblast léčby zlomenin a otevírá nové možnosti v řešení komplexních zlomenin. Využití 3D tisku v medicíně nabízí nový rozměr v přesnosti a individualizaci léčby, umožňuje vytváření personalizovaných chirurgických šablon, individualizovaných implantátů a nástrojů. Rozvoj 3D tisku je úzce propojen s dalšími technologickými pokroky, jako jsou metody augmentované reality, což představuje významný krok vpřed ve vizualizaci a plánování chirurgických zákroků. Přestože 3D aditivní technologie nabízí řadu výhod, její začlenění do běžné klinické praxe stále čelí mnoha výzvám. Tento článek rovněž zkoumá historii a vývoj technologie 3D tisku, materiály používané v medicíně, předoperační plánování, tvorbu chirurgických cíličů, výrobu pacient specifických implantátů a integraci této technologie spolu s metodami augmentované reality ve skeletální chirurgii, přičemž zdůrazňuje technické, logistické a etické výzvy při implementaci této technologie do chirurgické praxe.
The field of skeletal traumatology has undergone revolutionary changes worldwide over the last decade with the development of 3D printing technologies. This review aims to provide a comprehensive overview of how 3D printing is transforming fracture treatment and opening up new possibilities in the management of complex fractures. The use of 3D printing in medicine offers a new dimension in precision and customisation of treatment, enabling the creation of personalised surgical templates, individualised implants and tools. The development of 3D printing is closely linked to other technological advances, such as augmented reality methods, which represent a significant step forward in the visualisation and planning of surgical procedures. Although 3D printing offers many advantages, its integration into routine clinical practice still faces many challenges. This article examines the history and development of 3D printing technology, materials used in medicine, preoperative planning, the creation of surgical guides, the fabrication of patient-specific implants, and the integration of 3D printing and augmented reality in skeletal surgery, highlighting the technical, logistical, and ethical challenges of implementing this technology in surgical practice.
- MeSH
- 3D tisk * trendy MeSH
- biokompatibilní materiály MeSH
- design s pomocí počítače MeSH
- fraktury kostí * terapie MeSH
- kostní náhrady MeSH
- lidé MeSH
- traumatologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Cílem článku je podělit se o naše zkušenosti se zhotovováním 3D modelů autotransplantovaných zubů a jejich vlastním použitím při výkonu. Zhotovení 3D repliky zubu pro chirurgické využití má tři fáze: tvorba virtuálního modelu repliky, výroba pomocí 3D tiskárny a sterilizace. Na naše oddělení byla doporučena 37letá zdravá pacientka k návrhu řešení stavu zubů ve II. kvadrantu. Po posouzení klinického stavu, zhodnocení CBCT (cone beam computed tomography) a po domluvě s pacientkou jsme se rozhodli pro extrakce zubů 26, 27 a následně autotransplantaci zubu 28 do místa 26. Na základě dat z CBCT jsme vytvořili dva 3D modely autotransplantovaného zubu a provedli jejich sterilizaci. Po extrakci zubů 26 a 27 jsme extrakční ránu 26 upravili za pomoci vytvořených 3D modelů a provedli autotransplantaci, přičemž extraalveorální čas zubu 28 byl pouze 21 vteřin. Hojení proběhlo bez komplikací a pacientka je s výsledkem spokojená. Autotransplantace je jednou z možností volby při řešení ageneze nebo ztráty zubu. Využití 3D modelu při operačním zákroku vede k výraznému zkrácení extraalveolárního času autotransplantátu a ke snížení nebezpečí poškození buněk periodontálního ligamenta opakovaným vkládáním autotransplantátu do připravované štoly.
The aim of this study is to show the experience with autotransplanted 3D model development and its use during surgery. The development of a 3D model has undergone three phases: building the virtual model, 3D printing and finally sterilisation. A 37-year-old female patient was recommended to our department for treatment of the 2nd quadrant. After planning the extraction of 26, 27 and consequently autotransplantation of tooth 28 was decided. According to CBCT data, two 3D models of the autotransplanted tooth were built and plasma sterilisation was done. After extraction of 26 and 27, a tooth cavity was prepared for the 3D model phantom and the autotransplantation was finished; extra alveolar time of tooth 28 was only 21 seconds. Healing period had no adverse problems and the patient was very satisfied with the result. Autotransplantation is one of the possible choices when treating malformation or tooth loss. The use of a 3D phantom during surgery leads to shortening of surgery time, thus lowering the risk of periodontal tissue damage by repeated testing of the right size of the tooth position and size.
- MeSH
- 3D tisk * MeSH
- autologní štěp klasifikace transplantace MeSH
- autologní transplantace * metody MeSH
- dospělí MeSH
- extrakce zubů metody MeSH
- lidé MeSH
- moláry transplantace MeSH
- počítačová tomografie s kuželovým svazkem metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- kazuistiky MeSH
- práce podpořená grantem MeSH