surface activation
Dotaz
Zobrazit nápovědu
Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.
Elevated levels of cholesterol or triglycerides in the blood are one of the major risk factors for coronary heart disease, which is the foremost leading cause of death across the world. The aims of this study were to isolate and verify the potential probiotic strain and cholesterol-lowering capability from goat milk. The C03B-STR isolate had a broad-spectrum antibacterial property and exhibited remarkable bacteriostatic activity against Klebsiella pneumoniae ATCC 13883 (27.00 ± 1.73 mm), Pseudomonas aeruginosa ATCC 27853 (19.33 ± 0.57 mm) and Staphylococcus aureus ATCC 10832 (19.00 ± 1.00 mm) by agar well diffusion assay. This isolate is closely related to the 16S rDNA sequence of Acidipropionibacterium acidipropionici. Acidipropionibacterium acidipropionici C03B-STR can survive under acidic conditions (60.51 ± 0.02% of survival rate at pH 3.0 for 3 h) and was as bile-tolerant strain (> 80% of survival rate at 0.30% bile salts after 3 h of incubation). Furthermore, it showed significantly high cell surface hydrophobicity (74.36 ± 0.23%) and aggregation capability (> 83%) (p ≤ 0.05) but displayed low to moderate co-aggregation ability (44-61%). This strain can also be regarded as strongly adhesive (73.69 ± 0.74%) and inhibit pathogen attachment to the Caco-2 cell lines (39.20 ± 0.59-69.01 ± 0.29%). A. acidipropionici C03B-STR appeared to be safe (non-haemolytic) and controllable (sensitive to various antibiotics). Notably, it had the potential to suppress cholesterol uptake in Caco-2 cells (approximately 45%) and also reduced cholesterol level above 84% during the exponential phase under acidic conditions. Thus, A. acidipropionici C03B-STR from goat milk may be a promising novel potential cholesterol-lowering probiotic strain for application in functional foods and biotherapeutics.
- MeSH
- antibakteriální látky farmakologie MeSH
- antibióza MeSH
- anticholesteremika * farmakologie MeSH
- Caco-2 buňky MeSH
- cholesterol * metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kozy MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mléko * mikrobiologie MeSH
- probiotika * izolace a purifikace farmakologie MeSH
- RNA ribozomální 16S genetika MeSH
- žlučové kyseliny a soli MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
β-Glucans comprise a group of β-D-glucose polysaccharides (glucans) that occur naturally in the cell walls of bacteria, fungi, and cereals. Its degradation is catalyzed by β-glucanases, enzymes that catalyze the breakdown of β-glucan into cello-oligosaccharides and glucose. These enzymes are classified as endo-glucanases, exo-glucanases, and glucosidases according to their mechanism of action, being the lichenases (β-1,3;1,4-glucanases, EC 3.2.1.73) one of them. Hence, we aimed to enhance lichenase production by Thermothelomyces thermophilus through the application of response surface methodology, using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds as carbon sources. The crude extract was immobilized, with a focus on improving lichenase activity, using various ionic supports, including MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine)-agarose. Regarding lichenase, the optimal conditions yielding the highest activity were determined as 1.5% tamarind seeds, cultivation at 50 °C under static conditions for 72 h. Moreover, transitioning from Erlenmeyer flasks to a bioreactor proved pivotal, resulting in a 2.21-fold increase in activity. Biochemical characterization revealed an optimum temperature of 50 °C and pH of 6.5. However, sustained stability at varying pH and temperature levels was challenging, underscoring the necessity of immobilizing lichenase on ionic supports. Notably, CM-cellulose emerged as the most effective immobilization medium, exhibiting an activity of 1.01 U/g of the derivative (enzyme plus support), marking a substantial enhancement. This study marks the first lichenase immobilization on these chemical supports in existing literature.
- MeSH
- enzymy imobilizované * metabolismus chemie MeSH
- fungální proteiny * metabolismus chemie MeSH
- glykosidhydrolasy * metabolismus chemie biosyntéza MeSH
- koncentrace vodíkových iontů MeSH
- ovoce metabolismus MeSH
- semena rostlinná metabolismus MeSH
- Sordariales MeSH
- stabilita enzymů MeSH
- Tamarindus metabolismus mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Feruloyl esterases (FAEs) are a crucial component of the hemicellulose-degrading enzyme family that facilitates the degradation of lignocellulose while releasing hydroxycinnamic acids such as ferulic acid with high added value. Currently, the low enzyme yield of FAEs is one of the primary factors limiting its application. Therefore, in this paper, we optimized the fermentation conditions for the expression of FAE BpFaeT132C-D143C with excellent thermal stability in Escherichia coli by experimental design. Firstly, we explored the effects of 11 factors such as medium type, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration, and inoculum size on BpFaeT132C-D143C activity separately by the single factor design. Then, the significance of the effects of seven factors, such as post-induction temperature, shaker rotational speed, and inoculum size on BpFaeT132C-D143C activity, was analyzed by Plackett-Burman design. We identified the main factors affecting the fermentation conditions of E. coli expressing BpFaeT132C-D143C as post-induction temperature, pre-induction period, and post-induction period. Finally, we used the steepest ascent path design and response surface method to optimize the levels of these three factors further. Under the optimal conditions, the activity of BpFaeT132C-D143C was 3.58 U/ml, which was a significant 6.6-fold increase compared to the pre-optimization (0.47 U/ml), demonstrating the effectiveness of this optimization process. Moreover, BpFaeT132C-D143C activity was 1.52 U/ml in a 3-l fermenter under the abovementioned optimal conditions. It was determined that the expression of BpFaeT132C-D143C in E. coli was predominantly intracellular in the cytoplasm. This study lays the foundation for further research on BpFaeT132C-D143C in degrading agricultural waste transformation applications.
- MeSH
- Escherichia coli * genetika metabolismus enzymologie MeSH
- fermentace * MeSH
- isopropylthiogalaktosid metabolismus MeSH
- karboxylesterhydrolasy * genetika metabolismus chemie biosyntéza MeSH
- kultivační média chemie MeSH
- kyseliny kumarové metabolismus MeSH
- lignin MeSH
- rekombinantní proteiny genetika metabolismus biosyntéza chemie MeSH
- stabilita enzymů MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Starting point: Cervical dystonia is a common form of focal dystonia, resulting in neck pain and the development of asymmetric neck and head postures. These abnormal postures contribute to muscular impairment, muscle imbalances, and, as a result, alteration in movement patterns. This study aimed to compare the asymmetry of cervical muscle activation pattern during cervical flexion movements between individuals with cervical dystonia and healthy young subjects. Methods: Eight individuals with cervical dystonia and eight healthy participants participated in this study. We recorded muscle activation from five pairs of cervical muscles (sternocleidomastoid, scalene, trapezius, suprahyoid, and infrahyoid) using surface electromyography. Normalized cross-correlation was used to analyze the symmetry of bilateral muscle activation. Results: The results showed significant differences in muscle activation symmetry between the cervical dystonia group and healthy subjects. Notably, patients with cervical dystonia exhibited less symmetric activation in the trapezius and sternocleidomastoid muscles compared to healthy controls (p < 0.01 and p < 0.05, respectively). Additionally, the trapezius muscle on the dystonic side lacked coordination with other cervical muscles, unlike in healthy individuals who displayed better coordination. Conclusions: These findings underline the challenges faced by individuals with cervical dystonia in achieving symmetric activation and coordination of cervical muscles. Evaluating cervical muscle activation symmetry may be a valuable approach for assessing motor impairments in these patients.
- MeSH
- elektromyografie metody MeSH
- lidé MeSH
- pilotní projekty MeSH
- svalový tonus MeSH
- tortikolis * diagnóza patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- srovnávací studie MeSH
One of the main challenges in analyzing chemical messengers in the brain is the optimization of tissue sampling and preparation protocols. Limiting postmortem time and terminating enzyme activity is critical to identify low-abundance neurotransmitters and neuropeptides. Here, we used a rapid and uniform conductive heat transfer stabilization method that was compared with a conventional fresh freezing protocol. Together with a selective chemical derivatization method and an optimized quantitation approach using deuterated internal standards, we spatially mapped neurotransmitters and their related metabolites by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in rat brain tissue sections. Although the heat stabilization did not show differences in the levels of dopamine, norepinephrine, and serotonin, their related metabolites 3,4-dihydroxyphenylacetaldehyde, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxy-4-hydroxyphenylacetaldehyde, dihydroxyphenylethyleneglycol, and 5-hydroxyindoleacetic acid were all significantly lower, indicating reduced neurotransmitter postmortem turnover ratios. Heat stabilization enabled detection of an increased number and higher levels of prodynorphin, proenkephalin, and tachykinin-derived bioactive neuropeptides. The low-abundant C-terminal flanking peptide, neuropeptide-γ, and nociceptin remained intact and were exclusively imaged in heat-stabilized brains. Without heat stabilization, degradation fragments of full-length peptides occurred in the fresh frozen tissues. The sample preparation protocols were furthermore tested on rat brains affected by acute anesthesia induced by isoflurane and medetomidine, showing comparable results to non-anesthetized animals on the neurotransmitters level without significant changes. Our data provide evidence for the potential use of heat stabilization prior to MALDI-MSI analyses to improve the examination of the in vivo state of neuronal chemical messengers in brain tissues not impacted by prior acute anesthesia.
- MeSH
- krysa rodu rattus MeSH
- mozek - chemie * fyziologie MeSH
- mozek * metabolismus MeSH
- neurony * metabolismus chemie MeSH
- neurotransmiterové látky * metabolismus analýza MeSH
- potkani Sprague-Dawley MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- vysoká teplota * MeSH
- zmrazování MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Atherosclerosis is a chronic inflammatory disease of the blood vessels caused by elevated levels of lipoproteins. The hyperlipoproteinemia triggers a series of cellular changes, particularly the activation of the macrophages, which play a crucial role in the development and progression of atherosclerosis. The presence of free cholesterol (FC) in lipoproteins may contribute to macrophage stimulation. However, the mechanisms linking the accumulation of FC in macrophages to their pro-inflammatory activation remain poorly understood. Our research found a positive correlation between the number of pro-inflammatory macrophages (CD14 + CD16 + CD36high) in visceral adipose tissue and the levels of LDL-C and cholesterol remnant particles in 56 healthy people. In contrast, the proportion of anti-inflammatory, alternatively activated macrophages (CD14 + CD16-CD163+) correlated negatively with HDL-C. Additionally, our in vitro study demonstrated that macrophages accumulating FC promoted a pro-inflammatory response, activating the TNF-α and chemokine CCL3 genes. Furthermore, the accumulation of FC in macrophages alters the surface receptors on macrophages (CD206 and CD16) and increases cellular granularity. Notably, the CD36 surface receptor and the ACAT and CD36 genes did not show a response. These results suggest a link between excessive FC accumulation and systemic inflammation to underlie the development of atherosclerosis.
- MeSH
- aktivace makrofágů MeSH
- antigeny CD36 metabolismus MeSH
- ateroskleróza metabolismus MeSH
- CD antigeny metabolismus MeSH
- cholesterol * metabolismus MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy * metabolismus imunologie účinky léků MeSH
- nitrobřišní tuk metabolismus MeSH
- TNF-alfa metabolismus genetika MeSH
- zánět * metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
A new group of potent histone deacetylase inhibitors (HDACis) capable of inhibiting cell growth and affecting cell-cycle progression in Tohoku Hospital Pediatrics-1 (THP-1) monocytic leukaemia cells was synthesized. The inhibitors belong to a series of hydroxamic acid derivatives. We designed and synthesized a series of 22 N-hydroxycinnamamide derivatives, out of which 20 are new compounds. These compounds contain various substituted anilides as the surface recognition moiety (SRM), a p-hydroxycinnamate linker, and hydroxamic acids as the zinc-binding group (ZBG). The whole series of synthesized hydroxamic acids inhibited THP-1 cell proliferation. Compounds 7d and 7p, which belong to the category of derivatives with the most potent antiproliferative properties, exert a similar effect on cell-cycle progression as vorinostat and induce apoptosis in THP-1 cells. Furthermore, compounds 7d and 7p were demonstrated to inhibit HDAC class I and II in THP-1 cells with comparable potency to vorinostat and increase acetylation of histones H2a, H2b, H3, and H4. Molecular modelling was used to predict the probable binding mode of the studied HDACis in class I and II histone deacetylases in terms of Zn2+ ion chelation by the hydroxamate group.
- MeSH
- apoptóza * účinky léků MeSH
- buněčný cyklus účinky léků MeSH
- histondeacetylasy metabolismus MeSH
- inhibitory histondeacetylas * farmakologie chemická syntéza chemie MeSH
- kyseliny hydroxamové * farmakologie chemická syntéza chemie MeSH
- kyseliny kumarové * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemická syntéza chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- simulace molekulového dockingu MeSH
- THP-1 buňky MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This scoping review aimed to map methodologies used to assess landing biomechanics in gymnasts, focusing on muscle function and stability. Four research questions were formed, addressing common methodological approaches, factors affecting stability, and the relationships between muscle function, strength, and stability during landing. The searches were conducted across six databases and supplemented by reference and forward citation searches. Eight studies met the inclusion criteria, encompassing 212 participants aged 8-25 years, predominantly competitive gymnasts. The studies revealed significant variability in methods for assessing postural stabilization and muscle function during landing. Stabilization was evaluated using time to stabilization and center of pressure metrics, while muscle activity was predominantly measured via surface electromyography, focusing on lower limb muscles. Factors such as drop height, age, training level, and task-specific demands influenced muscle activity patterns but were inconsistently reported. Gymnasts demonstrated superior neuromuscular control compared to untrained individuals, with distinct muscle activation patterns during landing phases. Despite these insights, no studies examined the interplay between muscle strength, activity, and stabilization metrics. The lack of standardized methodologies limits direct comparisons and generalizations. This review highlights the need for consistent protocols and further research to explore relationships between muscle function, stability metrics, and performance outcomes in gymnastics.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The study focuses on the effects of fluvastatin on immunomarkers of the M1 and M2 macrophages and its direct role in macrophage (M0) polarization. Moreover, it investigates the dependency of immunomodulatory properties of fluvastatin on the mevalonate pathway. Macrophages (M0, M1, M2), differentiated from human blood monocytes, were treated with fluvastatin. Mevalonate and geranylgeranyl pyrophosphate intermediates were introduced to assess the mevalonate pathway dependence. The immunomarkers were evaluated with qPCR, ELISA, Griess assay, and flow cytometry. Fluvastatin significantly reduces the pro-inflammatory gene expression (NFκB, IL-1β, IL-6, iNOS) in M1 while enhancing the anti-inflammatory markers (Arg-1, TGFβ) in M2 macrophages. The production of the TNFα, IL-1β, and IL-6 cytokines is reduced in M1, and IL-10 production increased in M2 macrophages. Fluvastatin decreases the iNOS activity in M1 macrophages. The intermediates reverse the fluvastatin's effects on anti-inflammatory gene expression by M2 macrophages, cytokine production (by M1 and M2 macrophages), and iNOS activity (by M1 macrophages). Their impact on surface marker expression was somewhat limited. These findings demonstrate that fluvastatin exerts anti-inflammatory effects on polarized macrophages without affecting polarization per se and also highlight the dependency on the mevalonate pathway. This study deepens the understanding of statins' immunomodulatory mechanisms, suggesting potential applications in treating inflammatory diseases.
- MeSH
- antiflogistika * farmakologie MeSH
- cytokiny metabolismus MeSH
- fluvastatin * farmakologie MeSH
- kyselina mevalonová * metabolismus MeSH
- lidé MeSH
- makrofágy * účinky léků metabolismus imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH