-
Je něco špatně v tomto záznamu ?
Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells
V. Tomková, C. Sandoval-Acuña, N. Torrealba, J. Truksa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- antitumorózní látky hormonální farmakologie MeSH
- apoptóza MeSH
- buněčný cyklus MeSH
- chemorezistence * MeSH
- fenotyp MeSH
- glykolýza * MeSH
- lidé MeSH
- mitochondrie metabolismus patologie MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- nádory prsu farmakoterapie metabolismus patologie MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku metabolismus MeSH
- respirační komplex I metabolismus MeSH
- superoxidy metabolismus MeSH
- tamoxifen farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tamoxifen resistance remains a clinical obstacle in the treatment of hormone sensitive breast cancer. It has been reported that tamoxifen is able to target respiratory complex I within mitochondria. Therefore, we established two tamoxifen-resistant cell lines, MCF7 Tam5R and T47D Tam5R resistant to 5 μM tamoxifen and investigated whether tamoxifen-resistant cells exhibit mitochondrial changes which could help them survive the treatment. The function of mitochondria in this experimental model was evaluated in detail by studying i) the composition and activity of mitochondrial respiratory complexes; ii) respiration and glycolytic status; iii) mitochondrial distribution, dynamics and reactive oxygen species production. We show that Tam5R cells exhibit a significant decrease in mitochondrial respiration, low abundance of assembled mitochondrial respiratory supercomplexes, a more fragmented mitochondrial network connected with DRP1 Ser637 phosphorylation, higher glycolysis and sensitivity to 2-deoxyglucose. Tam5R cells also produce significantly higher levels of mitochondrial superoxide but at the same time increase their antioxidant defense (CAT, SOD2) through upregulation of SIRT3 and show phosphorylation of AMPK at Ser 485/491. Importantly, MCF7 ρ0 cells lacking functional mitochondria exhibit a markedly higher resistance to tamoxifen, supporting the role of mitochondria in tamoxifen resistance. We propose that reduced mitochondrial function and higher level of reactive oxygen species within mitochondria in concert with metabolic adaptations contribute to the phenotype of tamoxifen resistance.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025531
- 003
- CZ-PrNML
- 005
- 20201222155241.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.freeradbiomed.2019.09.004 $2 doi
- 035 __
- $a (PubMed)31494243
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Tomková, Veronika $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
- 245 10
- $a Mitochondrial fragmentation, elevated mitochondrial superoxide and respiratory supercomplexes disassembly is connected with the tamoxifen-resistant phenotype of breast cancer cells / $c V. Tomková, C. Sandoval-Acuña, N. Torrealba, J. Truksa,
- 520 9_
- $a Tamoxifen resistance remains a clinical obstacle in the treatment of hormone sensitive breast cancer. It has been reported that tamoxifen is able to target respiratory complex I within mitochondria. Therefore, we established two tamoxifen-resistant cell lines, MCF7 Tam5R and T47D Tam5R resistant to 5 μM tamoxifen and investigated whether tamoxifen-resistant cells exhibit mitochondrial changes which could help them survive the treatment. The function of mitochondria in this experimental model was evaluated in detail by studying i) the composition and activity of mitochondrial respiratory complexes; ii) respiration and glycolytic status; iii) mitochondrial distribution, dynamics and reactive oxygen species production. We show that Tam5R cells exhibit a significant decrease in mitochondrial respiration, low abundance of assembled mitochondrial respiratory supercomplexes, a more fragmented mitochondrial network connected with DRP1 Ser637 phosphorylation, higher glycolysis and sensitivity to 2-deoxyglucose. Tam5R cells also produce significantly higher levels of mitochondrial superoxide but at the same time increase their antioxidant defense (CAT, SOD2) through upregulation of SIRT3 and show phosphorylation of AMPK at Ser 485/491. Importantly, MCF7 ρ0 cells lacking functional mitochondria exhibit a markedly higher resistance to tamoxifen, supporting the role of mitochondria in tamoxifen resistance. We propose that reduced mitochondrial function and higher level of reactive oxygen species within mitochondria in concert with metabolic adaptations contribute to the phenotype of tamoxifen resistance.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antitumorózní látky hormonální $x farmakologie $7 D018931
- 650 _2
- $a apoptóza $7 D017209
- 650 _2
- $a nádory prsu $x farmakoterapie $x metabolismus $x patologie $7 D001943
- 650 _2
- $a buněčný cyklus $7 D002453
- 650 _2
- $a pohyb buněk $7 D002465
- 650 _2
- $a proliferace buněk $7 D049109
- 650 12
- $a chemorezistence $7 D019008
- 650 _2
- $a respirační komplex I $x metabolismus $7 D042967
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a glykolýza $7 D006019
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši nahé $7 D008819
- 650 _2
- $a mitochondrie $x metabolismus $x patologie $7 D008928
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a superoxidy $x metabolismus $7 D013481
- 650 _2
- $a tamoxifen $x farmakologie $7 D013629
- 650 _2
- $a nádorové buňky kultivované $7 D014407
- 650 _2
- $a xenogenní modely - testy antitumorózní aktivity $7 D023041
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sandoval-Acuña, Cristian $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
- 700 1_
- $a Torrealba, Natalia $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
- 700 1_
- $a Truksa, Jaroslav $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic. Electronic address: jaroslav.truksa@ibt.cas.cz.
- 773 0_
- $w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 143, č. - (2019), s. 510-521
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31494243 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155237 $b ABA008
- 999 __
- $a ok $b bmc $g 1599676 $s 1116217
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 143 $c - $d 510-521 $e 20190905 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
- LZP __
- $a Pubmed-20201125