Cold, Hot, and Lethal-The Tumour Microenvironment and the Immunology of Head and Neck Squamous Cell Carcinoma

. 2025 Sep 11 ; 26 (18) : . [epub] 20250911

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41009413

Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5102 European Union - Next Generation EU
NW24-03-00459 Ministry of Health of the Czech Republic - AZV CR
COOPERATIO-Onco Charles University project COOPERATIO-Onco

Head and neck squamous cell carcinomas (HNSCCs) represent a diverse group of malignancies, both clinically and biologically, with human papillomavirus (HPV) infection playing a significant role. HPV-positive tumours generally tend to have a better prognosis and are driven by oncoproteins E6 and E7. In contrast, HPV-negative tumours typically have a worse prognosis and are often linked to mutations in tumour suppressor genes. HNSCCs exist within a complex environment known as the tumour microenvironment (TME). The TME includes tumour cells, cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), immune cells, extracellular matrix (ECM), blood vessels, and various signalling molecules. These components support tumour progression, invasion, metastasis, and resistance to treatment. Intercellular signalling within the TME-mediated by cytokines such as IL-6, TGF-b, and galectins-further promotes tumour growth and systemic effects like cachexia. Notably, the TME shares features with granulation tissue during wound healing, supporting the concept of cancer as a chronic, non-resolving wound. Effective therapy must target not only tumour cells but also the dynamic TME.

Zobrazit více v PubMed

Liu X., Gao X.L., Liang X.H., Tang Y.L. The Etiologic Spectrum of Head and Neck Squamous Cell Carcinoma in Young Patients. Oncotarget. 2016;7:66226–66238. doi: 10.18632/oncotarget.11265. PubMed DOI PMC

Barsouk A., Aluru J.S., Rawla P., Saginala K., Barsouk A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023;11:42. doi: 10.3390/medsci11020042. PubMed DOI PMC

Novotný J., Bandúrová V., Strnad H., Chovanec M., Hradilová M., Šáchová J., Šteffl M., Grušanović J., Kodet R., Pačes V., et al. Analysis of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinomas and Paired Normal Mucosae Reveals Cyclin D1 Deregulation and Compensatory Effect of Cyclin D2. Cancers. 2020;12:792. doi: 10.3390/cancers12040792. PubMed DOI PMC

Birbrair A. In: Tumor Microenvironment. Birbrair A., editor. Volume 1225. Springer International Publishing; Cham, Germany: 2020.

Landskron G., De La Fuente M., Thuwajit P., Thuwajit C., Hermoso M.A. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J. Immunol. Res. 2014;2014:149185. doi: 10.1155/2014/149185. PubMed DOI PMC

Gorelik E., Galili U., Raz A. On the Role of Cell Surface Carbohydrates and Their Binding Proteins (Lectins) in Tumor Metastasis. Cancer Metastasis Rev. 2001;20:245–277. doi: 10.1023/A:1015535427597. PubMed DOI

Plzák J., Smetana K., Chovanec M., Betka J. Glycobiology of Head and Neck Squamous Epithelia and Carcinomas. ORL. 2005;67:61–69. doi: 10.1159/000084994. PubMed DOI

Solís D., Bovin N.V., Davis A.P., Jiménez-Barbero J., Romero A., Roy R., Smetana K., Gabius H.J. A Guide into Glycosciences: How Chemistry, Biochemistry and Biology Cooperate to Crack the Sugar Code. Biochim. Biophys. Acta Gen. Subj. 2015;1850:186–235. doi: 10.1016/j.bbagen.2014.03.016. PubMed DOI

Mellman I., Chen D.S., Powles T., Turley S.J. The Cancer-Immunity Cycle: Indication, Genotype, and Immunotype. Immunity. 2023;56:2188–2205. doi: 10.1016/j.immuni.2023.09.011. PubMed DOI

Joyce J.A., Fearon D.T. T Cell Exclusion, Immune Privilege, and the Tumor Microenvironment. Science. 2015;348:74–80. doi: 10.1126/science.aaa6204. PubMed DOI

Wang Y., Zhang H., Liu C., Wang Z., Wu W., Zhang N., Zhang L., Hu J., Luo P., Zhang J., et al. Immune Checkpoint Modulators in Cancer Immunotherapy: Recent Advances and Emerging Concepts. J. Hematol. Oncol. 2022;15:111. doi: 10.1186/s13045-022-01325-0. PubMed DOI PMC

Marin-Acevedo J.A., Dholaria B., Soyano A.E., Knutson K.L., Chumsri S., Lou Y. Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. J. Hematol. Oncol. 2018;11:39. doi: 10.1186/s13045-018-0582-8. PubMed DOI PMC

Muzaffar A., Tajudin A.A., Syahir A. A Cutting-Edge Solution to a Gordian Knot? Aptamers Targeting Cancer Stem Cell Markers for Strategic Cancer Therapy. Drug Discov. Today. 2025;30:104365. doi: 10.1016/j.drudis.2025.104365. PubMed DOI

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K. Cancer Microenvironment: What Can We Learn from the Stem Cell Niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Motlík J., Klíma J., Dvořánková B., Smetana K. Porcine Epidermal Stem Cells as a Biomedical Model for Wound Healing and Normal/Malignant Epithelial Cell Propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI

Čada Z., Bouček J., Dvořánková B., Chovanec M., Plzák J., Kodet R., Betka J., Pinot G.L., Gabius H.J., Smetana K. Nucleostemin Expression in Squamous Cell Carcinoma of the Head and Neck. Anticancer Res. 2007;27:3279–3284. PubMed

Fík Z., Dvorøánková B., Kodet O., Bouèek J., Betka J.A., Betka J., André S., Gabius H.J., Šnajdr P., Smetana K., et al. Towards Dissecting Molecular Routes of Intercellular Communication in the Tumour Microenvironment: Phenotypic Plasticity of Stem Cell-Associated Markers in Co-Culture (Carcinoma Cell/Fibroblast) Systems. Folia Biol. 2014;60:205–212. doi: 10.14712/fb2014060050205. PubMed DOI

Hamburger A.W., Salmon S.E. Primary Bioassay of Human Tumor Stem Cells. Science. 1977;197:461–463. doi: 10.1126/science.560061. PubMed DOI

Smetana K., Lacina L., Szabo P., Dvoánková B., Broẑ P., Ŝedo A. Ageing as an Important Risk Factor for Cancer. Anticancer Res. 2016;36:5009–5017. doi: 10.21873/anticanres.11069. PubMed DOI

Lacina L., Čoma M., Dvořánková B., Kodet O., Melegová N., Gál P., Smetana K. Evolution of Cancer Progression in the Context of Darwinism. Anticancer Res. 2019;39:1–16. doi: 10.21873/anticanres.13074. PubMed DOI

Agudo J. Immune Privilege of Skin Stem Cells: What Do We Know and What Can We Learn? Exp. Dermatol. 2021;30:522–528. doi: 10.1111/exd.14221. PubMed DOI

Agudo J., Park E.S., Rose S.A., Alibo E., Sweeney R., Dhainaut M., Kobayashi K.S., Sachidanandam R., Baccarini A., Merad M., et al. Quiescent Tissue Stem Cells Evade Immune Surveillance. Immunity. 2018;48 doi: 10.1016/j.immuni.2018.02.001. PubMed DOI PMC

Galassi C., Musella M., Manduca N., Maccafeo E., Sistigu A. The Immune Privilege of Cancer Stem Cells: A Key to Understanding Tumor Immune Escape and Therapy Failure. Cells. 2021;10:2361. doi: 10.3390/cells10092361. PubMed DOI PMC

Rodig S.J., Gusenleitner D., Jackson D.G., Gjini E., Giobbie-Hurder A., Jin C., Chang H., Lovitch S.B., Horak C., Weber J.S., et al. MHC Proteins Confer Differential Sensitivity to CTLA-4 and PD-1 Blockade in Untreated Metastatic Melanoma. Sci. Transl. Med. 2018;10:eaar3342. doi: 10.1126/scitranslmed.aar3342. PubMed DOI

Yamamoto K., Venida A., Yano J., Biancur D.E., Kakiuchi M., Gupta S., Sohn A.S.W., Mukhopadhyay S., Lin E.Y., Parker S.J., et al. Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I. Nature. 2020;581:100–105. doi: 10.1038/s41586-020-2229-5. PubMed DOI PMC

Miao Y., Yang H., Levorse J., Yuan S., Polak L., Sribour M., Singh B., Rosenblum M.D., Fuchs E. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177 doi: 10.1016/j.cell.2019.03.025. PubMed DOI PMC

Mani S.A., Guo W., Liao M.J., Eaton E.N., Ayyanan A., Zhou A.Y., Brooks M., Reinhard F., Zhang C.C., Shipitsin M., et al. The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell. 2008;133:704–715. doi: 10.1016/j.cell.2008.03.027. PubMed DOI PMC

Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative Phase Imaging Unravels New Insight into Dynamics of Mesenchymal and Amoeboid Cancer Cell Invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC

Gandalovičová A., Vomastek T., Rosel D., Brábek J. Cell Polarity Signaling in the Plasticity of Cancer Cell Invasiveness. Oncotarget. 2016;7:25022–25049. doi: 10.18632/oncotarget.7214. PubMed DOI PMC

Paget S. THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0. PubMed DOI

Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., et al. VEGFR1-Positive Haematopoietic Bone Marrow Progenitors Initiate the Pre-Metastatic Niche. Nature. 2005;438:820–827. doi: 10.1038/nature04186. PubMed DOI PMC

Wang Y., Jia J., Wang F., Fang Y., Yang Y., Zhou Q., Yuan W., Gu X., Hu J., Yang S. Pre-Metastatic Niche: Formation, Characteristics and Therapeutic Implication. Signal Transduct. Target. Ther. 2024;9:236. doi: 10.1038/s41392-024-01937-7. PubMed DOI PMC

Shaw P., Dey Bhowmik A., Gopinatha Pillai M.S., Robbins N., Dwivedi S.K.D., Rao G. Anoikis Resistance in Cancer: Mechanisms, Therapeutic Strategies, Potential Targets, and Models for Enhanced Understanding. Cancer Lett. 2025;624:217750. doi: 10.1016/j.canlet.2025.217750. PubMed DOI

Dvoránková B., Smetana K., Chovanec M., Lacina L., Stork J., Plzáková Z., Galovicová M., Gabius H.J. Transient Expression of Keratin 19 Is Induced in Originally Negative Interfollicular Epidermal Cells by Adhesion of Suspended Cells. Int. J. Mol. Med. 2005;16:525–531. PubMed

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics—Anti-Metastatic and Anti-Invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Dvořánková B., Smetana K., Říhová B., Kučera J., Mateu R., Szabo P. Cancer-Associated Fibroblasts Are Not Formed from Cancer Cells by Epithelial-to-Mesenchymal Transition in Nu/Nu Mice. Histochem. Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Dvořánková B., Szabo P., Lacina L., Kodet O., Matouškové E., Smetana K. Fibroblasts Prepared from Different Types of Malignant Tumors Stimulate Expression of Luminal Marker Keratin 8 in the EM-G3 Breast Cancer Cell Line. Histochem. Cell Biol. 2012;137:679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Mastronikolis N.S., Delides A., Kyrodimos E., Piperigkou Z., Spyropoulou D., Giotakis E., Tsiambas E., Karamanos N.K. Insights into Metastatic Roadmap of Head and Neck Cancer Squamous Cell Carcinoma Based on Clinical, Histopathological and Molecular Profiles. Mol. Biol. Rep. 2024;51:597. doi: 10.1007/s11033-024-09476-8. PubMed DOI PMC

Klein C.A. Cancer Progression and the Invisible Phase of Metastatic Colonization. Nat. Rev. Cancer. 2020;20:681–694. doi: 10.1038/s41568-020-00300-6. PubMed DOI

Nobre A.R., Dalla E., Yang J., Huang X., Wullkopf L., Risson E., Razghandi P., Anton M.L., Zheng W., Seoane J.A., et al. ZFP281 Drives a Mesenchymal-like Dormancy Program in Early Disseminated Breast Cancer Cells That Prevents Metastatic Outgrowth in the Lung. Nat. Cancer. 2022;3:1165–1180. doi: 10.1038/s43018-022-00424-8. PubMed DOI

Laudadio I., Bastianelli A., Fulci V., Carissimi C., Colantoni E., Palone F., Vitali R., Lorefice E., Cucchiara S., Negroni A., et al. ZNF281 Promotes Colon Fibroblast Activation in TGFβ1-Induced Gut Fibrosis. Int. J. Mol. Sci. 2022;23:10261. doi: 10.3390/ijms231810261. PubMed DOI PMC

Baeza-Hernández G., Cañueto J. Intralesional Treatments for Invasive Cutaneous Squamous Cell Carcinoma. Cancers. 2024;16:158. doi: 10.3390/cancers16010158. PubMed DOI PMC

Lippey J., Bousounis R., Behrenbruch C., McKay B., Spillane J., Henderson M.A., Speakman D., Gyorki D.E. Intralesional PV-10 for in-Transit Melanoma—A Single-Center Experience. J. Surg. Oncol. 2016;114:380–384. doi: 10.1002/jso.24311. PubMed DOI

Read T.A., Smith A., Thomas J., David M., Foote M., Wagels M., Barbour A., Smithers B.M. Intralesional PV-10 for the Treatment of in-Transit Melanoma Metastases—Results of a Prospective, Non-Randomized, Single Center Study. J. Surg. Oncol. 2018;117:579–587. doi: 10.1002/jso.24921. PubMed DOI PMC

Zhang L., Du J., Song Q., Zhang C., Wu X. A Novel In Situ Dendritic Cell Vaccine Triggered by Rose Bengal Enhances Adaptive Antitumour Immunity. J. Immunol. Res. 2022;2022:1178874. doi: 10.1155/2022/1178874. PubMed DOI PMC

Sztandera K., Gorzkiewicz M., Bątal M., Arkhipova V., Knauer N., Sánchez-Nieves J., de la Mata F.J., Gómez R., Apartsin E., Klajnert-Maculewicz B. Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. Int. J. Nanomed. 2022;17:1139–1154. doi: 10.2147/IJN.S352349. PubMed DOI PMC

Greig S.L. Talimogene Laherparepvec: First Global Approval. Drugs. 2016;76:147–154. doi: 10.1007/s40265-015-0522-7. PubMed DOI

DePalo D.K., Zager J.S. Advances in Intralesional Therapy for Locoregionally Advanced and Metastatic Melanoma: Five Years of Progress. Cancers. 2023;15:1404. doi: 10.3390/cancers15051404. PubMed DOI PMC

Pannhausen J., Wirtz J., Mantwill K., Holm P.-S., Schwamborn K., Jonigk D.D., Gschwend J.E., Rose M., Gaisa N.T., Nawroth R. Oncolytic Virotherapy Provides a Potent Therapy Option for Squamous Bladder Cancer. Sci. Rep. 2025;15:13443. doi: 10.1038/s41598-025-96419-3. PubMed DOI PMC

Ogawa F., Takaoka H., Iwai S., Aota K., Yura Y. Combined Oncolytic Virotherapy with Herpes Simplex Virus for Oral Squamous Cell Carcinoma. Anticancer Res. 2008;28:3637–3645. PubMed

Wu A., Li Z., Wang Y., Chen Y., Peng J., Zhu M., Li Y., Song H., Zhou D., Zhang C., et al. Recombinant Measles Virus Vaccine RMV-Hu191 Exerts an Oncolytic Effect on Esophageal Squamous Cell Carcinoma via Caspase-3/GSDME-Mediated Pyroptosis. Cell Death Discov. 2023;9:171. doi: 10.1038/s41420-023-01466-2. PubMed DOI PMC

Coley W.B. CONTRIBUTION TO THE KNOWLEDGE OF SARCOMA. Ann. Surg. 1891;14:199–220. doi: 10.1097/00000658-189112000-00015. PubMed DOI PMC

Kremenovic M., Chan A.A., Feng B., Bäriswyl L., Robatel S., Gruber T., Tang L., Lee D.J., Schenk M. BCG Hydrogel Promotes CTSS-Mediated Antigen Processing and Presentation, Thereby Suppressing Metastasis and Prolonging Survival in Melanoma. J. Immunother. Cancer. 2022;10:e004133. doi: 10.1136/jitc-2021-004133. PubMed DOI PMC

Chen Y., Zhang L., Shi H., Shen Z., Huang D., Tang S., He Y., Wang G., Pan H., Wang Z. Thermosensitive Hydrogel Delivery of BCG Lysates and Tumor Antigens: A Novel Strategy for Melanoma Immunoprevention and Therapeutics. Biochem. Biophys. Res. Commun. 2025;745:151215. doi: 10.1016/j.bbrc.2024.151215. PubMed DOI

Lardone R.D., Chan A.A., Lee A.F., Foshag L.J., Faries M.B., Sieling P.A., Lee D.J. Mycobacterium Bovis Bacillus Calmette–Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function. Front. Immunol. 2017;8:965. doi: 10.3389/fimmu.2017.00965. PubMed DOI PMC

Craig D.J., Nanavaty N.S., Devanaboyina M., Stanbery L., Hamouda D., Edelman G., Dworkin L., Nemunaitis J.J. The Abscopal Effect of Radiation Therapy. Future Oncol. 2021;17:1683–1694. PubMed

Rodríguez-Ruiz M.E., Vanpouille-Box C., Melero I., Formenti S.C., Demaria S. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends Immunol. 2018;39:644–655. doi: 10.1016/j.it.2018.06.001. PubMed DOI PMC

Yang H., Hu Y., Kong D., Chen P., Yang L. Intralesional Bacillus Calmette–Guérin Injections and Hypo-Fractionated Radiation Synergistically Induce Systemic Antitumor Immune Responses. Int. Immunopharmacol. 2023;114:109542. doi: 10.1016/j.intimp.2022.109542. PubMed DOI

Wang W., Xu H., Ye Q., Tao F., Wheeldon I., Yuan A., Hu Y., Wu J. Systemic Immune Responses to Irradiated Tumours via the Transport of Antigens to the Tumour Periphery by Injected Flagellate Bacteria. Nat. Biomed. Eng. 2022;6:44–53. doi: 10.1038/s41551-021-00834-6. PubMed DOI

Zhang Y.-P., Guo Z.-Q., Cai X.-T., Rong Z.-X., Fang Y., Chen J.-Q., Zhuang K.-M., Ruan M.-J., Ma S.-C., Lin L.-Y., et al. PAI-1-Driven SFRP2high Cancer-Associated Fibroblasts Hijack the Abscopal Effect of Radioimmunotherapy. Cancer Cell. 2025;43:856–874.e9. doi: 10.1016/j.ccell.2025.02.024. PubMed DOI

Vidovic D., Helyer L.K., Pasternak S., Giacomantonio C.A. Abscopal Responses in Patients with Metastatic Melanoma Involving Skin and Subcutaneous Tissues Treated with Intralesional IL2 plus BCG. Front. Oncol. 2023;13:1160269. doi: 10.3389/fonc.2023.1160269. PubMed DOI PMC

Plzák J., Lacina L., Chovanec M., Dvořánková B., Szabo P., Čada Z., Smetana K. Epithelial-Stromal Interaction in Squamous Cell Epithelium-Derived Tumors: An Important New Player in the Control of Tumor Biological Properties. Anticancer Res. 2010;30:455–462. PubMed

Valach J., Fík Z., Strnad H., Chovanec M., Plzák J., Čada Z., Szabo P., Šáchová J., Hroudová M., Urbanová M., et al. Smooth Muscle Actin-Expressing Stromal Fibroblasts in Head and Neck Squamous Cell Carcinoma: Increased Expression of Galectin-1 and Induction of Poor Prognosis Factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Liu L., Li Y., Li B. Interactions between Cancer Cells and Tumor-Associated Macrophages in Tumor Microenvironment. Biochim. Biophys. Acta (BBA)—Rev. Cancer. 2025;1880:189344. doi: 10.1016/j.bbcan.2025.189344. PubMed DOI

Kurt F.G.O., Lasser S., Arkhypov I., Utikal J., Umansky V. Enhancing Immunotherapy Response in Melanoma: Myeloid-Derived Suppressor Cells as a Therapeutic Target. J. Clin. Investig. 2023;133:e170762. doi: 10.1172/JCI170762. PubMed DOI PMC

von der Grün J., Rödel F., Brandts C., Fokas E., Guckenberger M., Rödel C., Balermpas P. Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go? Cancers. 2019;11:472. doi: 10.3390/cancers11040472. PubMed DOI PMC

Liu J., Chen Z., Li Y., Zhao W., Wu J.B., Zhang Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front. Pharmacol. 2021;12:731798. doi: 10.3389/fphar.2021.731798. PubMed DOI PMC

Zhang B., Song Y., Min Q., Cheng W., Wang J., Fu Y., Yin J. The Administration Sequences of Immune Checkpoint Inhibitors and Chemotherapy Cause Discrete Efficacy When Treating Non-Small Cell Lung Cancer: A Retrospective Study. Front. Immunol. 2025;16:1579420. doi: 10.3389/fimmu.2025.1579420. PubMed DOI PMC

Carter S., Wigmore T. Immunotherapy on ICU: A Narrative Review. Anaesthesia. 2025;80:299–310. doi: 10.1111/anae.16453. PubMed DOI

Curry J.M., Sprandio J., Cognetti D., Luginbuhl A., Bar-Ad V., Pribitkin E., Tuluc M. Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Semin. Oncol. 2014;41:217–234. doi: 10.1053/j.seminoncol.2014.03.003. PubMed DOI

Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Lacina L. Il-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:11027. doi: 10.3390/ijms222011027. PubMed DOI PMC

Wang L., Geng H., Liu Y., Liu L., Chen Y., Wu F., Liu Z., Ling S., Wang Y., Zhou L. Hot and Cold Tumors: Immunological Features and the Therapeutic Strategies. MedComm. 2023;4:e343. doi: 10.1002/mco2.343. PubMed DOI PMC

Tanaka M., Lum L., Hu K.H., Chaudhary P., Hughes S., Ledezma-Soto C., Samad B., Superville D., Ng K., Chumber A., et al. Tumor Cell Heterogeneity Drives Spatial Organization of the Intratumoral Immune Response. J. Exp. Med. 2025;222:e20242282. doi: 10.1084/jem.20242282. PubMed DOI PMC

Talhouni S., Fadhil W., Mongan N.P., Field L., Hunter K., Makhsous S., Maciel-Guerra A., Kaur N., Nestarenkaite A., Laurinavicius A., et al. Activated Tissue Resident Memory T-Cells (CD8+CD103+CD39+) Uniquely Predict Survival in Left Sided “Immune-Hot” Colorectal Cancers. Front. Immunol. 2023;14:1057292. doi: 10.3389/fimmu.2023.1057292. PubMed DOI PMC

Ren S., Lan T., Wu F., Chen S., Jiang X., Huo C., Li Z., Xie S., Wu D., Wang R., et al. Intratumoral CD103+ CD8+ T Cells Predict Response to Neoadjuvant Chemoimmunotherapy in Advanced Head and Neck Squamous Cell Carcinoma. Cancer Commun. 2023;43:1143–1163. doi: 10.1002/cac2.12480. PubMed DOI PMC

Patel R., Saab K., Luo L., Ma Y., Osman R.A., Williams N.T., Everitt J., Zelazowski M.J., Castro P., Decker W.K., et al. Nrf2 Hyperactivation as a Driver of Radiotherapy Resistance and Suppressed Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2025;ahead of print doi: 10.1158/1078-0432.CCR-25-0112. PubMed DOI PMC

Guan L., Nambiar D.K., Cao H., Viswanathan V., Kwok S., Hui A.B., Hou Y., Hildebrand R., von Eyben R., Holmes B.J., et al. NFE2L2 Mutations Enhance Radioresistance in Head and Neck Cancer by Modulating Intratumoral Myeloid Cells. Cancer Res. 2023;83:861–874. doi: 10.1158/0008-5472.CAN-22-1903. PubMed DOI PMC

Cederkvist H., Kolan S.S., Wik J.A., Sener Z., Skålhegg B.S. Identification and Characterization of a Novel Glutaminase Inhibitor. FEBS Open Bio. 2022;12:163–174. doi: 10.1002/2211-5463.13319. PubMed DOI PMC

Grünwald B.T., Devisme A., Andrieux G., Vyas F., Aliar K., McCloskey C.W., Macklin A., Jang G.H., Denroche R., Romero J.M., et al. Spatially Confined Sub-Tumor Microenvironments in Pancreatic Cancer. Cell. 2021;184 doi: 10.1016/j.cell.2021.09.022. PubMed DOI

Ma C., Yang C., Peng A., Sun T., Ji X., Mi J., Wei L., Shen S., Feng Q. Pan-Cancer Spatially Resolved Single-Cell Analysis Reveals the Crosstalk between Cancer-Associated Fibroblasts and Tumor Microenvironment. Mol. Cancer. 2023;22:170. doi: 10.1186/s12943-023-01876-x. PubMed DOI PMC

Pfeiferová L., Španko M., Šáchová J., Hradilová M., Pienta K.J., Valach J., Machoň V., Výmolová B., Šedo A., Bušek P., et al. The HOX Code of Human Adult Fibroblasts Reflects Their Ectomesenchymal or Mesodermal Origin. Histochem Cell Biol. 2025;163:38. doi: 10.1007/s00418-025-02362-9. PubMed DOI PMC

Ciszewski W.M., Wawro M.E., Sacewicz-Hofman I., Sobierajska K. Cytoskeleton Reorganization in EndMT—The Role in Cancer and Fibrotic Diseases. Int. J. Mol. Sci. 2021;22:11607. doi: 10.3390/ijms222111607. PubMed DOI PMC

Jia H., Chen X., Zhang L., Chen M. Cancer Associated Fibroblasts in Cancer Development and Therapy. J. Hematol. Oncol. 2025;18:36. doi: 10.1186/s13045-025-01688-0. PubMed DOI PMC

Farrington-Rock C., Crofts N.J., Doherty M.J., Ashton B.A., Griffin-Jones C., Canfield A.E. Chondrogenic and Adipogenic Potential of Microvascular Pericytes. Circulation. 2004;110:2226–2232. doi: 10.1161/01.CIR.0000144457.55518.E5. PubMed DOI

Lin S.-L., Kisseleva T., Brenner D.A., Duffield J.S. Pericytes and Perivascular Fibroblasts Are the Primary Source of Collagen-Producing Cells in Obstructive Fibrosis of the Kidney. Am. J. Pathol. 2008;173:1617–1627. doi: 10.2353/ajpath.2008.080433. PubMed DOI PMC

Ning X., Zhang H., Wang C., Song X. Exosomes Released by Gastric Cancer Cells Induce Transition of Pericytes Into Cancer-Associated Fibroblasts. Med. Sci. Monit. 2018;24:2350–2359. doi: 10.12659/MSM.906641. PubMed DOI PMC

Xu Y., Kovacic J.C. Endothelial to Mesenchymal Transition in Health and Disease. Annu. Rev. Physiol. 2023;85:245–267. doi: 10.1146/annurev-physiol-032222-080806. PubMed DOI

Di Benedetto P., Ruscitti P., Berardicurti O., Vomero M., Navarini L., Dolo V., Cipriani P., Giacomelli R. Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Clin. Exp. Immunol. 2021;205:12–27. doi: 10.1111/cei.13599. PubMed DOI PMC

Schwartz M.A., Vestweber D., Simons M. A Unifying Concept in Vascular Health and Disease. Science. 2018;360:270–271. doi: 10.1126/science.aat3470. PubMed DOI PMC

Zhu X., Wang Y., Soaita I., Lee H.-W., Bae H., Boutagy N., Bostwick A., Zhang R.-M., Bowman C., Xu Y., et al. Acetate Controls Endothelial-to-Mesenchymal Transition. Cell Metab. 2023;35:1163–1178.e10. doi: 10.1016/j.cmet.2023.05.010. PubMed DOI PMC

O’Fee K., Burley A., Stewart S., Wilkins A. Targeting Cancer-Associated Fibroblasts (CAFs) to Optimize Radiation Responses. Cancer J. 2025;31:e0776. doi: 10.1097/PPO.0000000000000776. PubMed DOI

Wei W.-F., Zhou H.-L., Chen P.-Y., Huang X.-L., Huang L., Liang L.-J., Guo C.-H., Zhou C.-F., Yu L., Fan L.-S., et al. Cancer-Associated Fibroblast-Derived PAI-1 Promotes Lymphatic Metastasis via the Induction of EndoMT in Lymphatic Endothelial Cells. J. Exp. Clin. Cancer Res. 2023;42:160. doi: 10.1186/s13046-023-02714-0. PubMed DOI PMC

Szabó P., Kolář M., Dvořánková B., Lacina L., Štork J., Vlček Č., Strnad H., Tvrdek M., Smetana K. Mouse 3T3 Fibroblasts under the Influence of Fibroblasts Isolated from Stroma of Human Basal Cell Carcinoma Acquire Properties of Multipotent Stem Cells. Biol. Cell. 2011;103:233–248. doi: 10.1042/BC20100113. PubMed DOI

Petersen O.W., Nielsen H.L., Gudjonsson T., Villadsen R., Rank F., Niebuhr E., Bissell M.J., Rønnov-Jessen L. Epithelial to Mesenchymal Transition in Human Breast Cancer Can Provide a Nonmalignant Stroma. Am. J. Pathol. 2003;162:391–402. doi: 10.1016/S0002-9440(10)63834-5. PubMed DOI PMC

Smetana K., Dvoránková B., Lacina L., Cada Z., Vonka V. Human Hair Follicle and Interfollicular Keratinocyte Reactivity to Mouse HPV16-Transformed Cells: An in Vitro Study. Oncol. Rep. 2008;20:75–80. doi: 10.3892/or.20.1.75. PubMed DOI

Dvorankova B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., André S., Gabius H.J., Sykova E., et al. Human Galectins Induce Conversion of Dermal Fibroblasts into Myofibroblasts and Production of Extracellular Matrix: Potential Application in Tissue Engineering and Wound Repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Novotný J., Strnadová K., Dvořánková B., Kocourková Š., Jakša R., Dundr P., Pačes V., Smetana K., Kolář M., Lacina L. Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers. 2020;12:3324. doi: 10.3390/cancers12113324. PubMed DOI PMC

Chen B., Chan W.N., Xie F., Mui C.W., Liu X., Cheung A.H.K., Lung R.W.M., Chow C., Zhang Z., Fang C., et al. The Molecular Classification of Cancer-associated Fibroblasts on a Pan-cancer Single-cell Transcriptional Atlas. Clin. Transl. Med. 2023;13:e1516. doi: 10.1002/ctm2.1516. PubMed DOI PMC

Wan Y., Hu Q., Sun K., Shi J., Liu L., Zhang X., Huang J., Gong C., Liu J., Wang H., et al. Heterogenous Cancer-Associated Fibroblasts Related Tumor Microenvironment Marked by CD10/KLF4/TIAM1 Were Identified in Pancreatic Adenocarcinoma by Integrated Transcriptomics. Front. Immunol. 2025;16:1557698. doi: 10.3389/fimmu.2025.1557698. PubMed DOI PMC

Szabo P., Valach J., Smetana K., Dvoránková B. Comparative Analysis of IL-8 and CXCL-1 Production by Normal and Cancer Stromal Fibroblasts. Folia Biol. 2013;59:134–137. doi: 10.14712/fb2013059030134. PubMed DOI

Jiang L., Gonda T.A., Gamble M.V., Salas M., Seshan V., Tu S., Twaddell W.S., Hegyi P., Lazar G., Steele I., et al. Global Hypomethylation of Genomic DNA in Cancer-Associated Myofibroblasts. Cancer Res. 2008;68:9900–9908. doi: 10.1158/0008-5472.CAN-08-1319. PubMed DOI PMC

Trylcova J., Busek P., Smetana K., Balaziova E., Dvorankova B., Mifkova A., Sedo A. Effect of Cancer-Associated Fibroblasts on the Migration of Glioma Cells in Vitro. Tumor Biol. 2015;36:5873–5879. doi: 10.1007/s13277-015-3259-8. PubMed DOI

Berndt A., Richter P., Kosmehl H., Franz M. Tenascin-C and Carcinoma Cell Invasion in Oral and Urinary Bladder Cancer. Cell Adh. Migr. 2015;9:105–111. doi: 10.1080/19336918.2015.1005463. PubMed DOI PMC

Zivicova V., Gal P., Mifkova A., Novak S., Kaltner H., Kolar M., Strnad H., Sachova J., Hradilova M., Chovanec M., et al. Detection of Distinct Changes in Gene-Expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-Positive/-Negative Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2018;38:1279–1290. doi: 10.21873/anticanres.12350. PubMed DOI

Novák Š., Kolář M., Szabó A., Vernerová Z., Lacina L., Strnad H., Šáchová J., Hradilová M., Havránek J., Španko M., et al. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-Associated/Normal Fibroblasts. Cancer Genom. Proteom. 2021;18:221–243. doi: 10.21873/cgp.20254. PubMed DOI PMC

Anastasia A., Formenti L., Ostano P., Minoli L., Resovi A., Morosi L., Fioravanti C., Micotti E., Matteo C., Scanziani E., et al. Stroma Gene Signature Predicts Responsiveness to Chemotherapy in Pancreatic Ductal Adenocarcinoma Patient-derived Xenograft Models. Mol. Oncol. 2025;19:1075–1091. doi: 10.1002/1878-0261.13816. PubMed DOI PMC

Bates M.E., Libring S., Reinhart-King C.A. Forces Exerted and Transduced by Cancer-Associated Fibroblasts during Cancer Progression. Biol. Cell. 2023;115:e2200104. doi: 10.1111/boc.202200104. PubMed DOI PMC

Saint A., Van Obberghen-Schilling E. The Role of the Tumor Matrix Environment in Progression of Head and Neck Cancer. Curr. Opin. Oncol. 2021;33:168–174. doi: 10.1097/CCO.0000000000000730. PubMed DOI

Maller O., Drain A.P., Barrett A.S., Borgquist S., Ruffell B., Zakharevich I., Pham T.T., Gruosso T., Kuasne H., Lakins J.N., et al. Tumour-Associated Macrophages Drive Stromal Cell-Dependent Collagen Crosslinking and Stiffening to Promote Breast Cancer Aggression. Nat. Mater. 2021;20:548–559. doi: 10.1038/s41563-020-00849-5. PubMed DOI PMC

Miéville A., Fonta C.M., Leo C., Christe L., Goldhahn J., Singer G., Vogel V. Fibronectin Fibers Progressively Lose Their Tension in Invasive Human Breast Carcinoma While Being Tensed in DCIS and Healthy Breast Tissue. Adv. Sci. 2025;12:e04351. doi: 10.1002/advs.202404351. PubMed DOI PMC

Provenzano P.P., Eliceiri K.W., Campbell J.M., Inman D.R., White J.G., Keely P.J. Collagen Reorganization at the Tumor-Stromal Interface Facilitates Local Invasion. BMC Med. 2006;4:38. doi: 10.1186/1741-7015-4-38. PubMed DOI PMC

Acerbi I., Cassereau L., Dean I., Shi Q., Au A., Park C., Chen Y.Y., Liphardt J., Hwang E.S., Weaver V.M. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration. Integr. Biol. 2015;7:1120–1134. doi: 10.1039/c5ib00040h. PubMed DOI PMC

Gordon-Weeks A., Yuzhalin A.E. Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers. 2020;12:3331. doi: 10.3390/cancers12113331. PubMed DOI PMC

Seclì L., Fusella F., Avalle L., Brancaccio M. The Dark-Side of the Outside: How Extracellular Heat Shock Proteins Promote Cancer. Cell. Mol. Life Sci. 2021;78:4069–4083. doi: 10.1007/s00018-021-03764-3. PubMed DOI PMC

Jürgensen H.J., van Putten S., Nørregaard K.S., Bugge T.H., Engelholm L.H., Behrendt N., Madsen D.H. Cellular Uptake of Collagens and Implications for Immune Cell Regulation in Disease. Cell. Mol. Life Sci. 2020;77:3161–3176. doi: 10.1007/s00018-020-03481-3. PubMed DOI PMC

Lieverse R.I.Y., Marcus D., van der Wiel A.M.A., Van Limbergen E.J., Theys J., Yaromina A., Lambin P., Dubois L.J. Human Fibronectin Extra Domain B as a Biomarker for Targeted Therapy in Cancer. Mol. Oncol. 2020;14:1555–1568. doi: 10.1002/1878-0261.12705. PubMed DOI PMC

Lin T.-C., Yang C.-H., Cheng L.-H., Chang W.-T., Lin Y.-R., Cheng H.-C. Fibronectin in Cancer: Friend or Foe. Cells. 2019;9:27. doi: 10.3390/cells9010027. PubMed DOI PMC

Wahbi W., Naakka E., Tuomainen K., Suleymanova I., Arpalahti A., Miinalainen I., Vaananen J., Grenman R., Monni O., Al-Samadi A., et al. The Critical Effects of Matrices on Cultured Carcinoma Cells: Human Tumor-Derived Matrix Promotes Cell Invasive Properties. Exp. Cell Res. 2020;389:111885. doi: 10.1016/j.yexcr.2020.111885. PubMed DOI

Barker T.H., Engler A.J. The Provisional Matrix: Setting the Stage for Tissue Repair Outcomes. Matrix Biol. 2017;60–61:1–4. doi: 10.1016/j.matbio.2017.04.003. PubMed DOI PMC

Gopal S., Veracini L., Grall D., Butori C., Schaub S., Audebert S., Camoin L., Baudelet E., Adwanska A., Beghelli-De La Forest Divonne S., et al. Fibronectin-Guided Migration of Carcinoma Collectives. Nat. Commun. 2017;8:14105. doi: 10.1038/ncomms14105. PubMed DOI PMC

Rick J.W., Chandra A., Dalle Ore C., Nguyen A.T., Yagnik G., Aghi M.K. Fibronectin in Malignancy: Cancer-Specific Alterations, Protumoral Effects, and Therapeutic Implications. Semin. Oncol. 2019;46:284–290. doi: 10.1053/j.seminoncol.2019.08.002. PubMed DOI PMC

da Costa Santos M.A.R., dos Reis J.S., do Nascimento Santos C.A., da Costa K.M., Barcelos P.M., de Oliveira Francisco K.Q., Barbosa P.A.G.N., da Silva E.D.S., Freire-de-Lima C.G., Morrot A., et al. Expression of O-Glycosylated Oncofetal Fibronectin in Alternatively Activated Human Macrophages. Immunol. Res. 2023;71:92–104. doi: 10.1007/s12026-022-09321-9. Correction in Immunol. Res. 2023, 71, 105–106. PubMed DOI

Dos Reis J.S., da Costa Santos M.A.R., da Costa K.M., Freire-de-Lima C.G., Morrot A., Previato J.O., Previato L.M., da Fonseca L.M., Freire-de-Lima L. Increased Expression of the Pathological O-Glycosylated Form of Oncofetal Fibronectin in the Multidrug Resistance Phenotype of Cancer Cells. Matrix Biol. 2023;118:47–68. doi: 10.1016/j.matbio.2023.03.002. PubMed DOI

Wang Y., Wang G., Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules. 2022;12:1689. doi: 10.3390/biom12111689. PubMed DOI PMC

Cai X., Han M., Lou F., Sun Y., Yin Q., Sun L., Wang Z., Li X., Zhou H., Xu Z., et al. Tenascin C+ Papillary Fibroblasts Facilitate Neuro-Immune Interaction in a Mouse Model of Psoriasis. Nat. Commun. 2023;14:2004. doi: 10.1038/s41467-023-37798-x. PubMed DOI PMC

Bhattacharyya S., Midwood K.S., Varga J. Tenascin-C in Fibrosis in Multiple Organs: Translational Implications. Semin. Cell Dev. Biol. 2022;128:130–136. doi: 10.1016/j.semcdb.2022.03.019. PubMed DOI PMC

De Gregorio C., Ramos-Gonzalez G., Morales-Catalán B., Ezquer F., Ezquer M. Paw Skin as a Translational Model for Investigating Fibrotic and Inflammatory Wound Healing Defects in Recessive Dystrophic Epidermolysis Bullosa. Int. J. Mol. Sci. 2025;26:4281. doi: 10.3390/ijms26094281. PubMed DOI PMC

Bonamonte D., Filoni A., De Marco A., Lospalluti L., Nacchiero E., Ronghi V., Colagrande A., Giudice G., Cazzato G. Squamous Cell Carcinoma in Patients with Inherited Epidermolysis Bullosa: Review of Current Literature. Cells. 2022;11:1365. doi: 10.3390/cells11081365. PubMed DOI PMC

Spenle C., Loustau T., Murdamoothoo D., Erne W., Beghelli-De la Forest Divonne S., Veber R., Petti L., Bourdely P., Morgelin M., Brauchle E.M., et al. Tenascin-C Orchestrates an Immune-Suppressive Tumor Microenvironment in Oral Squamous Cell Carcinoma. Cancer Immunol. Res. 2020;8:1122–1138. doi: 10.1158/2326-6066.CIR-20-0074. PubMed DOI

Sanjurjo L., Schulkens I.A., Touarin P., Heusschen R., Aanhane E., Castricum K.C.M., De Gruijl T.D., Nilsson U.J., Leffler H., Griffioen A.W., et al. Chemokines Modulate Glycan Binding and the Immunoregulatory Activity of Galectins. Commun. Biol. 2021;4:1415. doi: 10.1038/s42003-021-02922-4. PubMed DOI PMC

Dong S., Zhang S., Zhao P., Lin G., Ma X., Xu J., Zhang H., Hu J., Zou C. A Combined Analysis of Bulk and Single-Cell Sequencing Data Reveals That Depleted Extracellular Matrix and Enhanced Immune Processes Co-Contribute to Fluorouracil Beneficial Responses in Gastric Cancer. Front. Immunol. 2022;13:999551. doi: 10.3389/fimmu.2022.999551. PubMed DOI PMC

Raudenska M., Balvan J., Hanelova K., Bugajova M., Masarik M. Cancer-Associated Fibroblasts: Mediators of Head and Neck Tumor Microenvironment Remodeling. Biochim. Biophys. Acta Rev. Cancer. 2023;1878:188940. doi: 10.1016/j.bbcan.2023.188940. PubMed DOI

Cumming J., Maneshi P., Dongre M., Alsaed T., Dehghan-Nayeri M.J., Ling A., Pietras K., Patthey C., Öhlund D. Dissecting FAP+ Cell Diversity in Pancreatic Cancer Uncovers an Interferon-Response Subtype of Cancer-Associated Fibroblasts with Tumor-Restraining Properties. Cancer Res. 2025;85:2388–2411. doi: 10.1158/0008-5472.CAN-23-3252. PubMed DOI PMC

Kieffer Y., Hocine H.R., Gentric G., Pelon F., Bernard C., Bourachot B., Lameiras S., Albergante L., Bonneau C., Guyard A., et al. Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discov. 2020;10:1330–1351. doi: 10.1158/2159-8290.CD-19-1384. PubMed DOI

Puram S.V., Tirosh I., Parikh A.S., Patel A.P., Yizhak K., Gillespie S., Rodman C., Luo C.L., Mroz E.A., Emerick K.S., et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell. 2017;171 doi: 10.1016/j.cell.2017.10.044. PubMed DOI PMC

Pradhan R.N., Krishnamurty A.T., Fletcher A.L., Turley S.J., Müller S. A Bird’s Eye View of Fibroblast Heterogeneity: A Pan-Disease, Pan-Cancer Perspective. Immunol. Rev. 2021;302:299–320. doi: 10.1111/imr.12990. PubMed DOI

Jenkins L., Jungwirth U., Avgustinova A., Iravani M., Mills A., Haider S., Harper J., Isacke C.M. Cancer-Associated Fibroblasts Suppress CD8+ T-Cell Infiltration and Confer Resistance to Immune-Checkpoint Blockade. Cancer Res. 2022;82:2904–2917. doi: 10.1158/0008-5472.CAN-21-4141. PubMed DOI PMC

Hou W. Role of TGFβ-Activated Cancer-Associated Fibroblasts in the Resistance to Checkpoint Blockade Immunotherapy. Front. Oncol. 2025;15:1602452. doi: 10.3389/fonc.2025.1602452. PubMed DOI PMC

Yun Z., Giaccia A.J. Tumor Suppressor Genes. Humana Press; Totowa, NJ, USA: 2003. Tumor Deprivation of Oxygen and Tumor Suppressor Gene Function; pp. 485–504. PubMed

Le Q.T., Shi G., Cao H., Nelson D.W., Wang Y., Chen E.Y., Zhao S., Kong C., Richardson D., O’Byrne K.J., et al. Galectin-1: A Link between Tumor Hypoxia and Tumor Immune Privilege. J. Clin. Oncol. 2005;23:8932–8941. doi: 10.1200/JCO.2005.02.0206. PubMed DOI PMC

Brizel D.M., Dodge R.K., Clough R.W., Dewhirst M.W. Oxygenation of Head and Neck Cancer: Changes during Radiotherapy and Impact on Treatment Outcome. Radiother. Oncol. 1999;53:113–117. doi: 10.1016/S0167-8140(99)00102-4. PubMed DOI

Bremnes R.M., Dønnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI

Comito G., Giannoni E., Segura C.P., Barcellos-De-Souza P., Raspollini M.R., Baroni G., Lanciotti M., Serni S., Chiarugi P. Cancer-Associated Fibroblasts and M2-Polarized Macrophages Synergize during Prostate Carcinoma Progression. Oncogene. 2014;33:2423–2431. doi: 10.1038/onc.2013.191. PubMed DOI

Krishnamurthy S., Warner K.A., Dong Z., Imai A., Nör C., Ward B.B., Helman J.I., Taichman R.S., Bellile E.L., McCauley L.K., et al. Endothelial Interleukin-6 Defines the Tumorigenic Potential of Primary Human Cancer Stem Cells. Stem Cells. 2014;32:2845–2857. doi: 10.1002/stem.1793. PubMed DOI PMC

Sattiraju A., Kang S., Giotti B., Chen Z., Marallano V.J., Brusco C., Ramakrishnan A., Shen L., Tsankov A.M., Hambardzumyan D., et al. Hypoxic Niches Attract and Sequester Tumor-Associated Macrophages and Cytotoxic T Cells and Reprogram Them for Immunosuppression. Immunity. 2023;56 doi: 10.1016/j.immuni.2023.06.017. PubMed DOI PMC

Seymour L.W., Ulbrich K., Steyger P.S., Brereton M., Subr V., Strohalm J., Duncan R. Tumour Tropism and Anti-Cancer Efficacy of Polymer-Based Doxorubicin Prodrugs in the Treatment of Subcutaneous Murine B16F10 Melanoma. Br. J. Cancer. 1994;70:636–641. doi: 10.1038/bjc.1994.363. PubMed DOI PMC

Karras P., Bordeu I., Pozniak J., Nowosad A., Pazzi C., Van Raemdonck N., Landeloos E., Van Herck Y., Pedri D., Bervoets G., et al. A Cellular Hierarchy in Melanoma Uncouples Growth and Metastasis. Nature. 2022;610:190–198. doi: 10.1038/s41586-022-05242-7. Correction in Nature 2022, 611, E4. PubMed DOI PMC

Anstee J.E., Feehan K.T., Opzoomer J.W., Dean I., Muller H.P., Bahri M., Cheung T.S., Liakath-Ali K., Liu Z., Choy D., et al. LYVE-1+ Macrophages Form a Collaborative CCR5-Dependent Perivascular Niche That Influences Chemotherapy Responses in Murine Breast Cancer. Dev. Cell. 2023;58 doi: 10.1016/j.devcel.2023.06.006. PubMed DOI

Verginadis I.I., Avgousti H., Monslow J., Skoufos G., Chinga F., Kim K., Leli N.M., Karagounis I.V., Bell B.I., Velalopoulou A., et al. A Stromal Integrated Stress Response Activates Perivascular Cancer-Associated Fibroblasts to Drive Angiogenesis and Tumour Progression. Nat. Cell Biol. 2022;24:940–953. doi: 10.1038/s41556-022-00918-8. PubMed DOI PMC

Xiao Z., Todd L., Huang L., Noguera-Ortega E., Lu Z., Huang L., Kopp M., Li Y., Pattada N., Zhong W., et al. Desmoplastic Stroma Restricts T Cell Extravasation and Mediates Immune Exclusion and Immunosuppression in Solid Tumors. Nat. Commun. 2023;14:5110. doi: 10.1038/s41467-023-40850-5. PubMed DOI PMC

Puzianowska-Kuźnicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., Skalska A., Jonas M., Franek E., Mossakowska M. Interleukin-6 and C-Reactive Protein, Successful Aging, and Mortality: The PolSenior Study. Immun. Ageing. 2016;13:21. doi: 10.1186/s12979-016-0076-x. PubMed DOI PMC

Wolf J., Rose-John S., Garbers C. Interleukin-6 and Its Receptors: A Highly Regulated and Dynamic System. Cytokine. 2014;70:11–20. doi: 10.1016/j.cyto.2014.05.024. PubMed DOI

Neurath L., Sticherling M., Schett G., Fagni F. Targeting Cytokines in Psoriatic Arthritis. Cytokine Growth Factor Rev. 2024;78:1–13. doi: 10.1016/j.cytogfr.2024.06.001. PubMed DOI

Rose-John S., Jenkins B.J., Garbers C., Moll J.M., Scheller J. Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nat. Rev. Immunol. 2023;23:666–681. doi: 10.1038/s41577-023-00856-y. PubMed DOI PMC

Thuya W.L., Cao Y., Ho P.C.-L., Wong A.L.-A., Wang L., Zhou J., Nicot C., Goh B.C. Insights into IL-6/JAK/STAT3 Signaling in the Tumor Microenvironment: Implications for Cancer Therapy. Cytokine Growth Factor Rev. 2025;ahead of print doi: 10.1016/j.cytogfr.2025.01.003. PubMed DOI

Schaefer E.J., Dulipsingh L., Comite F., Jimison J., Grajower M.M., Lebowitz N.E., Lang M., Geller A.S., Diffenderfer M.R., He L., et al. Corona Virus Disease-19 Serology, Inflammatory Markers, Hospitalizations, Case Finding, and Aging. PLoS ONE. 2021;16:e0252818. doi: 10.1371/journal.pone.0252818. PubMed DOI PMC

Gál P., Brábek J., Holub M., Jakubek M., Šedo A., Lacina L., Strnadová K., Dubový P., Hornychová H., Ryška A., et al. Autoimmunity, Cancer and COVID-19 Abnormally Activate Wound Healing Pathways: Critical Role of Inflammation. Histochem. Cell Biol. 2022;158:415–434. doi: 10.1007/s00418-022-02140-x. PubMed DOI PMC

Virtanen A., Spinelli F.R., Telliez J.B., O’Shea J.J., Silvennoinen O., Gadina M. JAK Inhibitor Selectivity: New Opportunities, Better Drugs? Nat. Rev. Rheumatol. 2024;20:649–665. doi: 10.1038/s41584-024-01153-1. PubMed DOI

Flynn C.M., Kespohl B., Daunke T., Garbers Y., Düsterhöft S., Rose-John S., Haybaeck J., Lokau J., Aparicio-Siegmund S., Garbers C. Interleukin-6 Controls Recycling and Degradation, but Not Internalization of Its Receptors. J. Biol. Chem. 2021;296:100434. doi: 10.1016/j.jbc.2021.100434. PubMed DOI PMC

Locke F.L., Neelapu S.S., Bartlett N.L., Lekakis L.J., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., Timmerman J.M., et al. Tocilizumab Prophylaxis Following Axicabtagene Ciloleucel in Relapsed or Refractory Large B-Cell Lymphoma. Transpl. Cell Ther. 2024;30:1065–1079. doi: 10.1016/j.jtct.2024.08.018. PubMed DOI

Groza Y., Lacina L., Kuchař M., Rašková Kafková L., Zachová K., Janoušková O., Osička R., Černý J., Petroková H., Mierzwicka J.M., et al. Small Protein Blockers of Human IL-6 Receptor Alpha Inhibit Proliferation and Migration of Cancer Cells. Cell Commun. Signal. 2024;22:261. doi: 10.1186/s12964-024-01630-w. PubMed DOI PMC

Vandercappellen J., Van Damme J., Struyf S. The Role of CXC Chemokines and Their Receptors in Cancer. Cancer Lett. 2008;267:226–244. doi: 10.1016/j.canlet.2008.04.050. PubMed DOI

Ogura M., Takeuchi H., Kawakubo H., Nishi T., Fukuda K., Nakamura R., Takahashi T., Wada N., Saikawa Y., Omori T., et al. Clinical Significance of CXCL-8/CXCR-2 Network in Esophageal Squamous Cell Carcinoma. Surgery. 2013;154:512–520. doi: 10.1016/j.surg.2013.06.013. PubMed DOI

Jobe N.P., Rösel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J. Simultaneous Blocking of IL-6 and IL-8 Is Sufficient to Fully Inhibit CAF-Induced Human Melanoma Cell Invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 Paracrine Signalling Pathway Infers a Strategy to Inhibit Tumour Cell Migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Ray C.M.P., Yang H., Spangler J.B., Mac Gabhann F. Mechanistic Computational Modeling of Monospecific and Bispecific Antibodies Targeting Interleukin-6/8 Receptors. PLoS Comput. Biol. 2024;20:e1012157. doi: 10.1371/journal.pcbi.1012157. PubMed DOI PMC

Kolář M., Szabo P., Dvořánková B., Lacina L., Gabius H.J., Strnad H., Šáchová J., Vlček Č., Plzák J., Chovanec M., et al. Upregulation of IL-6, IL-8 and CXCL-1 Production in Dermal Fibroblasts by Normal/Malignant Epithelial Cells in Vitro: Immunohistochemical and Transcriptomic Analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Nishihira J. Macrophage Migration Inhibitory Factor (MIF): Its Essential Role in the Immune System and Cell Growth. J. Interferon Cytokine Res. 2000;20:751–762. doi: 10.1089/10799900050151012. PubMed DOI

Gilliver S.C., Emmerson E., Bernhagen J., Hardman M.J. MIF: A Key Player in Cutaneous Biology and Wound Healing. Exp. Dermatol. 2011;20:1–6. doi: 10.1111/j.1600-0625.2010.01194.x. PubMed DOI

Ashcroft G.S., Mills S.J., Lei K.J., Gibbons L., Jeong M.J., Taniguchi M., Burow M., Horan M.A., Wahl S.M., Nakayama T. Estrogen Modulates Cutaneous Wound Healing by Downregulating Macrophage Migration Inhibitory Factor. J. Clin. Investig. 2003;111:1309–1318. doi: 10.1172/JCI16288. PubMed DOI PMC

Calvin M., Dyson M., Rymer J., Young S.R. The Effects of Ovarian Hormone Deficiency on Wound Contraction in a Rat Model. BJOG. 1998;105:223–227. doi: 10.1111/j.1471-0528.1998.tb10057.x. PubMed DOI

Kubota Y., Takubo K., Shimizu T., Ohno H., Kishi K., Shibuya M., Saya H., Suda T. M-CSF Inhibition Selectively Targets Pathological Angiogenesis and Lymphangiogenesis. J. Exp. Med. 2009;206:1089–1102. doi: 10.1084/jem.20081605. PubMed DOI PMC

Izzo J.G., Correa A.M., Wu T.T., Malhotra U., Chao C.K.S., Luthra R., Ensor J., Dekovich A., Liao Z., Hittelman W.N., et al. Pretherapy Nuclear Factor-ΚB Status, Chemoradiation Resistance, and Metastatic Progression in Esophageal Carcinoma. Mol. Cancer Ther. 2006;5:2844–2850. doi: 10.1158/1535-7163.MCT-06-0351. PubMed DOI

Civenni G., Longoni N., Costales P., Dallavalle C., Inclán C.G., Albino D., Nuñez L.E., Morís F., Carbone G.M., Catapano C.V. EC-70124, a Novel Glycosylated Indolocarbazole Multikinase Inhibitor, Reverts Tumorigenic and Stem Cell Properties in Prostate Cancer by Inhibiting STAT3 and NF-ΚB. Mol. Cancer Ther. 2016;15:806–818. doi: 10.1158/1535-7163.MCT-15-0791. PubMed DOI

Greten F.R., Arkan M.C., Bollrath J., Hsu L.C., Goode J., Miething C., Göktuna S.I., Neuenhahn M., Fierer J., Paxian S., et al. NF-ΚB Is a Negative Regulator of IL-1β Secretion as Revealed by Genetic and Pharmacological Inhibition of IKKβ. Cell. 2007;130:918–931. doi: 10.1016/j.cell.2007.07.009. PubMed DOI PMC

Graves D.T., Nooh N., Gillen T., Davey M., Patel S., Cottrell D., Amar S. IL-1 Plays a Critical Role in Oral, But Not Dermal, Wound Healing. J. Immunol. 2001;167:5316–5320. doi: 10.4049/jimmunol.167.9.5316. PubMed DOI

Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal Stem Cell Transition to Tumor-Associated Fibroblasts Contributes to Fibrovascular Network Expansion and Tumor Progression. PLoS ONE. 2009;4:e4992. doi: 10.1371/journal.pone.0004992. PubMed DOI PMC

Gál P., Varinská L., Fáber L., Novák Š., Szabo P., Mitrengová P., Mirossay A., Mučaji P., Smetana K. How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC

Barondes S.H., Castronovo V., Cooper D.N.W., Cummings R.D., Drickamer K., Felzi T., Gitt M.A., Hirabayashi J., Hughes C., Kasai K., et al. Galectins: A Family of Animal β-Galactoside-Binding Lectins. Cell. 1994;76:597–598. doi: 10.1016/0092-8674(94)90498-7. PubMed DOI

Yang R.Y., Rabinovich G.A., Liu F.T. Galectins: Structure, Function and Therapeutic Potential. Expert Rev. Mol. Med. 2008;10:e17. doi: 10.1017/S1462399408000719. PubMed DOI

Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Galectin Expression in Cancer Diagnosis and Prognosis: A Systematic Review. Biochim. Biophys. Acta Rev. Cancer. 2015;1855:235–247. doi: 10.1016/j.bbcan.2015.03.003. PubMed DOI

Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S., Blanchard H., Ralph S.J. Galectin-1 as a Potent Target for Cancer Therapy: Role in the Tumor Microenvironment. Cancer Metastasis Rev. 2012;31:763–778. doi: 10.1007/s10555-012-9388-2. PubMed DOI

Astorgues-Xerri L., Riveiro M.E., Tijeras-Raballand A., Serova M., Neuzillet C., Albert S., Raymond E., Faivre S. Unraveling Galectin-1 as a Novel Therapeutic Target for Cancer. Cancer Treat. Rev. 2014;40:307–319. doi: 10.1016/j.ctrv.2013.07.007. PubMed DOI

Perillo N.L., Pace K.E., Seilhamer J.J., Baum L.G. Apoptosis of T Cells Mediated by Galectin−1. Nature. 1995;378:736–739. doi: 10.1038/378736a0. PubMed DOI

Sanchez-Ruderisch H., Detjen K.M., Welzel M., André S., Fischer C., Gabius H.-J., Rosewicz S. Galectin-1 Sensitizes Carcinoma Cells to Anoikis via the Fibronectin Receptor A5β1-Integrin. Cell Death Differ. 2011;18:806–816. doi: 10.1038/cdd.2010.148. PubMed DOI PMC

Ruvolo P.P. Galectin 3 as a Guardian of the Tumor Microenvironment. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:427–437. doi: 10.1016/j.bbamcr.2015.08.008. PubMed DOI

Dvorak H.F. Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. N. Engl. J. Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI

Busek P., Duke-Cohan J.S., Sedo A. Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers. 2022;14:2072. doi: 10.3390/cancers14092072. PubMed DOI PMC

Sindelka R., Naraine R., Abaffy P., Zucha D., Kraus D., Netusil J., Smetana K., Lacina L., Endaya B.B., Neuzil J., et al. Characterization of Regeneration Initiating Cells during Xenopus Laevis Tail Regeneration. Genome Biol. 2024;25:251. doi: 10.1186/s13059-024-03396-3. PubMed DOI PMC

Li H., Fan X., Houghton J.M. Tumor Microenvironment: The Role of the Tumor Stroma in Cancer. J. Cell Biochem. 2007;101:805–815. doi: 10.1002/jcb.21159. PubMed DOI

Hinz B. Formation and Function of the Myofibroblast during Tissue Repair. J. Investig. Dermatol. 2007;127:526–537. doi: 10.1038/sj.jid.5700613. PubMed DOI

Lacina L., Kolář M., Pfeiferová L., Gál P., Smetana K. Wound Healing: Insights into Autoimmunity, Ageing, and Cancer Ecosystems through Inflammation and IL-6 Modulation. Front. Immunol. 2024;15:1403570. doi: 10.3389/fimmu.2024.1403570. PubMed DOI PMC

Jakovija A., Chtanova T. Skin Immunity in Wound Healing and Cancer. Front. Immunol. 2023;14:1060258. doi: 10.3389/fimmu.2023.1060258. PubMed DOI PMC

Robles D.T., Berg D. Abnormal Wound Healing: Keloids. Clin. Dermatol. 2007;25:26–32. doi: 10.1016/j.clindermatol.2006.09.009. PubMed DOI

Živicová V., Lacina L., Mateu R., Smetana K., Kavková R., Krejcí E.D., Grim M., Kvasilová A., Borský J., Strnad H., et al. Analysis of Dermal Fibroblasts Isolated from Neonatal and Child Cleft Lip and Adult Skin: Developmental Implications on Reconstructive Surgery. Int. J. Mol. Med. 2017;40:1323–1334. doi: 10.3892/ijmm.2017.3128. PubMed DOI PMC

Uberoi A., McCready-Vangi A., Grice E.A. The Wound Microbiota: Microbial Mechanisms of Impaired Wound Healing and Infection. Nat. Rev. Microbiol. 2024;22:507–521. doi: 10.1038/s41579-024-01035-z. PubMed DOI

Goswami A.G., Basu S., Banerjee T., Shukla V.K. Biofilm and Wound Healing: From Bench to Bedside. Eur. J. Med. Res. 2023;28:157. doi: 10.1186/s40001-023-01121-7. PubMed DOI PMC

Yuan Q., Wu H., Tan H., Wang X., Cao Y., Chen G. Oral Microbial Dysbiosis Driven by Periodontitis Facilitates Oral Squamous Cell Carcinoma Progression. Cancers. 2025;17:2181. doi: 10.3390/cancers17132181. PubMed DOI PMC

Roberts S.L., Bhamra R., Ilankovan V. Malignant Transformation Rate of Erosive Oral Lichen Planus: A Retrospective Study. Br. J. Oral Maxillofac. Surg. 2024;62:788–793. doi: 10.1016/j.bjoms.2023.11.020. PubMed DOI

Gallimidi A.B., Fischman S., Revach B., Bulvik R., Maliutina A., Rubinstein A.M., Nussbaum G., Elkin M. Periodontal Pathogens Porphyromonas Gingivalis and Fusobacterium Nucleatum Promote Tumor Progression in an Oral-Specific Chemical Carcinogenesis Model. Oncotarget. 2015;6:22613–22623. doi: 10.18632/oncotarget.4209. PubMed DOI PMC

Saikia P.J., Pathak L., Mitra S., Das B. The Emerging Role of Oral Microbiota in Oral Cancer Initiation, Progression and Stemness. Front. Immunol. 2023;14:1198269. doi: 10.3389/fimmu.2023.1198269. PubMed DOI PMC

Zhang S., Li C., Liu J., Geng F., Shi X., Li Q., Lu Z., Pan Y. Fusobacterium Nucleatum Promotes Epithelial-Mesenchymal Transiton through Regulation of the LncRNA MIR4435-2HG/MiR-296-5p/Akt2/SNAI1 Signaling Pathway. FEBS J. 2020;287:4032–4047. doi: 10.1111/febs.15233. PubMed DOI PMC

Panebianco C., Andriulli A., Pazienza V. Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Anticancer Therapies. Microbiome. 2018;6:92. doi: 10.1186/s40168-018-0483-7. PubMed DOI PMC

Liu X., Sun M., Pu F., Ren J., Qu X. Transforming Intratumor Bacteria into Immunopotentiators to Reverse Cold Tumors for Enhanced Immuno-Chemodynamic Therapy of Triple-Negative Breast Cancer. J. Am. Chem. Soc. 2023;145:26296–26307. doi: 10.1021/jacs.3c09472. PubMed DOI

Yu T.C., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., et al. Fusobacterium Nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017;170 doi: 10.1016/j.cell.2017.07.008. PubMed DOI PMC

Zhang S., Huang J., Jiang Z., Tong H., Ma X., Liu Y. Tumor Microbiome: Roles in Tumor Initiation, Progression, and Therapy. Mol. Biomed. 2025;6:9. doi: 10.1186/s43556-025-00248-9. PubMed DOI PMC

Liu J., Zhang Y. Intratumor Microbiome in Cancer Progression: Current Developments, Challenges and Future Trends. Biomark. Res. 2022;10:37. doi: 10.1186/s40364-022-00381-5. PubMed DOI PMC

Jiang M., Yang Z., Dai J., Wu T., Jiao Z., Yu Y., Ning K., Chen W., Yang A. Intratumor Microbiome: Selective Colonization in the Tumor Microenvironment and a Vital Regulator of Tumor Biology. MedComm. 2023;4:e376. doi: 10.1002/mco2.376. PubMed DOI PMC

Wong-Rolle A., Wei H.K., Zhao C., Jin C. Unexpected Guests in the Tumor Microenvironment: Microbiome in Cancer. Protein Cell. 2021;12:426–435. doi: 10.1007/s13238-020-00813-8. PubMed DOI PMC

Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P.M., et al. Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science. 2015;350:1079–1084. doi: 10.1126/science.aad1329. PubMed DOI PMC

Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut Microbiome Influences Efficacy of PD-1-Based Immunotherapy against Epithelial Tumors. Science. 2018;359:91–97. doi: 10.1126/science.aan3706. PubMed DOI

Borgers J.S.W., Burgers F.H., Terveer E.M., van Leerdam M.E., Korse C.M., Kessels R., Flohil C.C., Blank C.U., Schumacher T.N., van Dijk M., et al. Conversion of Unresponsiveness to Immune Checkpoint Inhibition by Fecal Microbiota Transplantation in Patients with Metastatic Melanoma: Study Protocol for a Randomized Phase Ib/IIa Trial. BMC Cancer. 2022;22:1366. doi: 10.1186/s12885-022-10457-y. PubMed DOI PMC

Routy B., Lenehan J.G., Miller W.H., Jamal R., Messaoudene M., Daisley B.A., Hes C., Al K.F., Martinez-Gili L., Punčochář M., et al. Fecal Microbiota Transplantation plus Anti-PD-1 Immunotherapy in Advanced Melanoma: A Phase I Trial. Nat. Med. 2023;29:2121–2132. doi: 10.1038/s41591-023-02453-x. Correction in Nat. Med. 2024, 30, 604. PubMed DOI

Zimmers T.A., Fishel M.L., Bonetto A. STAT3 in the Systemic Inflammation of Cancer Cachexia. Semin. Cell Dev. Biol. 2016;54:28–41. doi: 10.1016/j.semcdb.2016.02.009. PubMed DOI PMC

Zhu X.A., Starosta S., Ferrer M., Hou J., Chevy Q., Lucantonio F., Muñoz-Castañeda R., Zhang F., Zang K., Zhao X., et al. A Neuroimmune Circuit Mediates Cancer Cachexia-Associated Apathy. Science. 2025;388:eadm8857. doi: 10.1126/science.adm8857. PubMed DOI

Yun J.-Y., Jung J.Y., Keam B., Lee N.-R., Kang J.H., Kim Y.J., Shim H.-J., Jung K.H., Koh S.-J., Ryu H., et al. Depression, Performance Status, and Discontinued Treatment Mediate an Association of Curability Belief with Prognosis in Advanced Cancer Patients. Sci. Rep. 2024;14:29098. doi: 10.1038/s41598-024-80687-6. PubMed DOI PMC

Emmons H.A., Wallace C.W., Fordahl S.C. Interleukin-6 and Tumor Necrosis Factor-α Attenuate Dopamine Release in Mice Fed a High-Fat Diet, but Not Medium or Low-Fat Diets. Nutr. Neurosci. 2023;26:864–874. doi: 10.1080/1028415X.2022.2103613. PubMed DOI PMC

Felger J.C. Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Springer; Cham, Switzerland: 2016. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications; pp. 199–219. PubMed

Bauer M.E., Teixeira A.L. Neuroinflammation in Mood Disorders: Role of Regulatory Immune Cells. Neuroimmunomodulation. 2021;28:99–107. doi: 10.1159/000515594. PubMed DOI

Alpert O., Begun L., Issac T., Solhkhah R. The Brain–Gut Axis in Gastrointestinal Cancers. J. Gastrointest. Oncol. 2021;12:S301–S310. doi: 10.21037/jgo-2019-gi-04. PubMed DOI PMC

Dai H., Yang H., Wang R., Wang X., Zhang X. Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer–Depression Comorbidity Management. Nutrients. 2025;17:1505. doi: 10.3390/nu17091505. PubMed DOI PMC

Cash E., Albert C., Palmer I., Polzin B., Kabithe A., Crawford D., Bumpous J.M., Sephton S.E. Depressive Symptoms, Systemic Inflammation, and Survival Among Patients With Head and Neck Cancer. JAMA Otolaryngol.–Head Neck Surg. 2024;150:405. doi: 10.1001/jamaoto.2024.0231. PubMed DOI PMC

Gonçalves D.C., Gomes S.P., Seelaender M. Metabolic, Inflammatory, and Molecular Impact of Cancer Cachexia on the Liver. Int. J. Mol. Sci. 2024;25:11945. doi: 10.3390/ijms252211945. PubMed DOI PMC

Strnadová K., Pfeiferová L., Přikryl P., Dvořánková B., Vlčák E., Frýdlová J., Vokurka M., Novotný J., Šáchová J., Hradilová M., et al. Exosomes Produced by Melanoma Cells Significantly Influence the Biological Properties of Normal and Cancer-Associated Fibroblasts. Histochem. Cell Biol. 2022;157:153–172. doi: 10.1007/s00418-021-02052-2. PubMed DOI PMC

Vokurka M., Lacina L., Brábek J., Kolář M., Ng Y.Z., Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int. J. Mol. Sci. 2022;23:964. doi: 10.3390/ijms23020964. PubMed DOI PMC

Wang G., Li J., Bojmar L., Chen H., Li Z., Tobias G.C., Hu M., Homan E.A., Lucotti S., Zhao F., et al. Tumour Extracellular Vesicles and Particles Induce Liver Metabolic Dysfunction. Nature. 2023;618:374–382. doi: 10.1038/s41586-023-06114-4. PubMed DOI PMC

Tilg H., Adolph T.E., Dudek M., Knolle P. Non-Alcoholic Fatty Liver Disease: The Interplay between Metabolism, Microbes and Immunity. Nat. Metab. 2021;3:1596–1607. doi: 10.1038/s42255-021-00501-9. PubMed DOI

Stienstra R., Saudale F., Duval C., Keshtkar S., Groener J.E.M., van Rooijen N., Staels B., Kersten S., Müller M. Kupffer Cells Promote Hepatic Steatosis Via Interleukin-1β–Dependent Suppression of Peroxisome Proliferator-Activated Receptor α Activity. Hepatology. 2010;51:511–522. doi: 10.1002/hep.23337. PubMed DOI

Rubinstein M.M., Brown K.A., Iyengar N.M. Targeting Obesity-Related Dysfunction in Hormonally Driven Cancers. Br. J. Cancer. 2021;125:495–509. doi: 10.1038/s41416-021-01393-y. PubMed DOI PMC

Brown K.A. Metabolic Pathways in Obesity-Related Breast Cancer. Nat. Rev. Endocrinol. 2021;17:350–363. doi: 10.1038/s41574-021-00487-0. PubMed DOI PMC

Caruso A., Gelsomino L., Panza S., Accattatis F.M., Naimo G.D., Barone I., Giordano C., Catalano S., Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules. 2023;13:1084. doi: 10.3390/biom13071084. PubMed DOI PMC

Pham D.-V., Park P.-H. Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. Int. J. Mol. Sci. 2021;22:1444. doi: 10.3390/ijms22031444. PubMed DOI PMC

Shi H., Hao X., Sun Y., Zhao Y., Wang Y., Cao X., Gong Z., Ji S., Lu J., Yan Y., et al. Exercise-inducible Circulating Extracellular Vesicle Irisin Promotes Browning and the Thermogenic Program in White Adipose Tissue. Acta Physiol. 2024;240:e14103. doi: 10.1111/apha.14103. PubMed DOI

Huang Q., Wu M., Wu X., Zhang Y., Xia Y. Muscle-to-Tumor Crosstalk: The Effect of Exercise-Induced Myokine on Cancer Progression. Biochim. Biophys. Acta (BBA)—Rev. Cancer. 2022;1877:188761. doi: 10.1016/j.bbcan.2022.188761. PubMed DOI

Becher T., Palanisamy S., Kramer D.J., Eljalby M., Marx S.J., Wibmer A.G., Butler S.D., Jiang C.S., Vaughan R., Schöder H., et al. Brown Adipose Tissue Is Associated with Cardiometabolic Health. Nat. Med. 2021;27:58–65. doi: 10.1038/s41591-020-1126-7. PubMed DOI PMC

Seki T., Yang Y., Sun X., Lim S., Xie S., Guo Z., Xiong W., Kuroda M., Sakaue H., Hosaka K., et al. Brown-Fat-Mediated Tumour Suppression by Cold-Altered Global Metabolism. Nature. 2022;608:421–428. doi: 10.1038/s41586-022-05030-3. PubMed DOI PMC

Oliveira G.L., Coelho A.R., Marques R., Oliveira P.J. Cancer Cell Metabolism: Rewiring the Mitochondrial Hub. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2021;1867:166016. doi: 10.1016/j.bbadis.2020.166016. PubMed DOI

Nishikawa H., Goto M., Fukunishi S., Asai A., Nishiguchi S., Higuchi K. Cancer Cachexia: Its Mechanism and Clinical Significance. Int. J. Mol. Sci. 2021;22:8491. doi: 10.3390/ijms22168491. PubMed DOI PMC

Petruzzelli M., Schweiger M., Schreiber R., Campos-Olivas R., Tsoli M., Allen J., Swarbrick M., Rose-John S., Rincon M., Robertson G., et al. A Switch from White to Brown Fat Increases Energy Expenditure in Cancer-Associated Cachexia. Cell Metab. 2014;20:433–447. doi: 10.1016/j.cmet.2014.06.011. PubMed DOI

Thompson J.J., McGovern J., Roxburgh C.S.D., Edwards J., Dolan R.D., McMillan D.C. The Relationship between LDH and GLIM Criteria for Cancer Cachexia: Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2024;199:104378. doi: 10.1016/j.critrevonc.2024.104378. PubMed DOI

Li L., Xing M., Wang R., Ding X., Wan X., Yu X. The Predictive Values of Sarcopenia Screening Tools in Preoperative Elderly Patients with Colorectal Cancer: Applying the Diagnostic Criteria of EWGSOP2 and AWGS2019. BMC Geriatr. 2025;25:206. doi: 10.1186/s12877-025-05806-y. PubMed DOI PMC

Meza-Valderrama D., Marco E., Dávalos-Yerovi V., Muns M.D., Tejero-Sánchez M., Duarte E., Sánchez-Rodríguez D. Sarcopenia, Malnutrition, and Cachexia: Adapting Definitions and Terminology of Nutritional Disorders in Older People with Cancer. Nutrients. 2021;13:761. doi: 10.3390/nu13030761. PubMed DOI PMC

Berriel Diaz M., Rohm M., Herzig S. Cancer Cachexia: Multilevel Metabolic Dysfunction. Nat. Metab. 2024;6:2222–2245. doi: 10.1038/s42255-024-01167-9. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...