Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery

. 2017 Nov ; 40 (5) : 1323-1334. [epub] 20170907

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28901389

The nonsyndromic cleft is one of the most frequent congenital defects in humans. Clinical data demonstrated improved and almost scarless neonatal healing of reparative surgery. Based on our previous results on crosstalk between neonatal fibroblasts and adult keratinocytes, the present study focused on characterization of fibroblasts prepared from cleft lip tissue samples of neonates and older children, and compared them with samples isolated from normal adult skin (face and breast) and scars. Although subtle variances in expression profiles of children and neonates were observed, the two groups differed significantly from adult cells. Compared with adult cells, differences were observed in nestin and smooth muscle actin (SMA) expression at the protein and transcript level. Furthermore, fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine, transforming growth factor-β1 (TGF-β1). Dysregulation of the TGF-β signalling pathway, including low expression of the TGF-β receptor II, may contribute to reducing scarring in neonates. Fibroblasts of facial origin also exhibited age independent differences from the cells prepared from the breast, reflecting the origin of the facial cells from neural crest-based ectomesenchyme.

Zobrazit více v PubMed

Panamonta V, Pradubwong S, Panamonta M, Chowchuen B. Global Birth Prevalence of Orofacial Clefts: A Systematic Review. J Med Assoc Thai. 2015;98(Suppl 7):S11–S21. PubMed

Dunkhase E, Ludwig KU, Knapp M, Skibola CF, Figueiredo JC, Hosking FJ, Ellinghaus E, Landi MT, Ma H, Nakagawa H, et al. Nonsyndromic cleft lip with or without cleft palate and cancer: Evaluation of a possible common genetic background through the analysis of GWAS data. Genom Data. 2016;10:22–29. doi: 10.1016/j.gdata.2016.08.017. PubMed DOI PMC

Galinier P, Salazard B, Deberail A, Vitkovitch F, Caovan C, Chausseray G, Acar P, Sami K, Guitard J, Smail N. Neonatal repair of cleft lip: A decision-making protocol. J Pediatr Surg. 2008;43:662–667. doi: 10.1016/j.jpedsurg.2007.12.006. PubMed DOI

Harris PA, Oliver NK, Slater P, Murdoch L, Moss AL. Safety of neonatal cleft lip repair. J Plast Surg Hand Surg. 2010;44:231–236. doi: 10.3109/02844311.2010.499666. PubMed DOI

Borský J, Velemínská J, Jurovčík M, Kozák J, Hechtová D, Tvrdek M, Černý M, Kabelka Z, Fajstavr J, Janota J, et al. Successful early neonatal repair of cleft lip within first 8 days of life. Int J Pediatr Otorhinolaryngol. 2012;76:1616–1626. doi: 10.1016/j.ijporl.2012.07.031. PubMed DOI

Dadáková M, Cagáňová V, Dupej J, Hoffmannová E, Borský J, Velemínská J. Three-dimensional evaluation of facial morphology in pre-school cleft patients following neonatal cheiloplasty. J Craniomaxillofac Surg. 2016;44:1109–1116. doi: 10.1016/j.jcms.2016.07.023. PubMed DOI

Hoffmannova E, Bejdová Š, Borský J, Dupej J, Cagáňová V, Velemínská J. Palatal growth in complete unilateral cleft lip and palate patients following neonatal cheiloplasty: Classic and geometric morphometric assessment. Int J Pediatr Otorhinolaryngol. 2016;90:71–76. doi: 10.1016/j.ijporl.2016.08.028. PubMed DOI

Coolen NA, Schouten KCWM, Boekema BKHL, Middelkoop E, Ulrich MMW. Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound Repair Regen. 2010;18:291–301. doi: 10.1111/j.1524-475X.2010.00585.x. PubMed DOI

Yates CC, Hebda P, Wells A. Skin wound healing and scarring: Fetal wounds and regenerative restitution. Birth Defects Res C Embryo Today. 2012;96:325–333. doi: 10.1002/bdrc.21024. PubMed DOI PMC

Kieran I, Knock A, Bush J, So K, Metcalfe A, Hobson R, Mason T, O'Kane S, Ferguson M. Interleukin-10 reduces scar formation in both animal and human cutaneous wounds: Results of two preclinical and phase II randomized control studies. Wound Repair Regen. 2013;21:428–436. doi: 10.1111/wrr.12043. PubMed DOI

Gourevitch D, Kossenkov AV, Zhang Y, Clark L, Chang C, Showe LC, Heber-Katz E. Inflammation and its correlates in regenerative wound healing: An alternate perspective. Adv Wound Care (New Rochelle) 2014;3:592–603. doi: 10.1089/wound.2014.0528. PubMed DOI PMC

King A, Balaji S, Le LD, Crombleholme TM, Keswani SG. Regenerative wound healing: The role of interleukin-10. Adv Wound Care (New Rochelle) 2014;3:315–323. doi: 10.1089/wound.2013.0461. PubMed DOI PMC

Walraven M, Talhout W, Beelen RHJ, van Egmond M, Ulrich MM. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533–541. doi: 10.1111/wrr.12421. PubMed DOI

Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, Mustoe TA. The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201:391–397. doi: 10.1016/j.jamcollsurg.2005.03.032. PubMed DOI

Schmid P, Itin P, Cherry G, Bi C, Cox DA. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar. Am J Pathol. 1998;152:485–493. PubMed PMC

Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol. 1999;1:260–266. doi: 10.1038/12971. PubMed DOI

Dang CM, Beanes SR, Soo C, Ting K, Behaim P, Hendrick MH, Lorenz HP. Decreased expression of growth factor isoforms and receptors during scarless repair. Plast Reconstr Surg. 2003;111:1969–1979. doi: 10.1097/01.PRS.0000054837.47432.E7. PubMed DOI

Dang CM, Beanes SR, Lee H, Zhang X, Soo C, Ting K. Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast Reconstr Surg. 2003;111:2273–2285. doi: 10.1097/01.PRS.0000060102.57809.DA. PubMed DOI

Tan KK, Salgado G, Connolly JE, Chan JK, Lane EB. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: A potential source of cells for skin reconstruction. Stem Cell Reports. 2014;3:324–338. doi: 10.1016/j.stemcr.2014.06.005. PubMed DOI PMC

Krejčí E, Kodet O, Szabo P, Borský J, Smetana K, Jr, Grim M, Dvořánková B. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res. 2015;64:561–569. PubMed

Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci USA. 1985;82:5390–5394. doi: 10.1073/pnas.82.16.5390. PubMed DOI PMC

Shin DM, Suszynska M, Mierzejewska K, Ratajczak J, Ratajczak MZ. Very small embryonic-like stem-cell optimization of isolation protocols: An update of molecular signatures and a review of current in vivo applications. Exp Mol Med. 2013;45:e56. doi: 10.1038/emm.2013.117. PubMed DOI PMC

Mateu R, Živicová V, Krejčí ED, Grim M, Strnad H, Vlček Č, Kolář M, Lacina L, Gál P, Borský J, et al. Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med. 2016;38:1063–1074. doi: 10.3892/ijmm.2016.2706. PubMed DOI PMC

Pratsinis H, Armatas A, Dimozi A, Lefaki M, Vassiliu P, Kletsas D. Paracrine anti-fibrotic effects of neonatal cells and living cell constructs on young and senescent human dermal fibroblasts. Wound Repair Regen. 2013;21:842–851. doi: 10.1111/wrr.12110. PubMed DOI

Gilbert SF. The central nervous system and the epidermis. In: Sunderland MA, editor. Developmental Biology. 6th edition. Sinauer Associates; Sunderland: 2000. pp. 379–410.

Ng YZ, Pourreyron C, Salas-Alanis JC, Dayal JH, Cepeda-Valdes R, Yan W, Wright S, Chen M, Fine JD, Hogg FJ. Fibroblast-derived dermal matrix drives development of aggressive cutaneous squamous cell carcinoma in patients with recessive dystrophic epidermolysis bullosa. Cancer Res. 2012;72:3522–3534. doi: 10.1158/0008-5472.CAN-11-2996. PubMed DOI

Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K., Jr Cancer microenvironment: What can we learn from the stem cell niche. Int J Mol Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Kruger NJ. Basic protein and peptide protocols. In: Walker JM, editor. Methods in Molecular biology. Vol. 32. Humana Press Inc; Totowa, NJ: 1994. pp. 9–15. PubMed

Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62:65–74. doi: 10.1124/mol.62.1.65. PubMed DOI

Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–2367. doi: 10.1093/bioinformatics/btq431. PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC

RC Team . R: A Language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: 2016. https://www.R-project.org/

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC

Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC

Gene Ontology Consortium Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015;43:D1049–D1056. doi: 10.1093/nar/gku1179. PubMed DOI PMC

Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Syková E, et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Kolář M, Szabo P, Dvořánková B, Lacina L, Gabius HJ, Strnad H, Sáchová J, Vlček C, Plzák J, Chovanec M, et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Holland PWH, Booth HAF, Bruford EA. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007;5:47. doi: 10.1186/1741-7007-5-47. PubMed DOI PMC

Xiong W, He F, Morikawa Y, Yu X, Zhang Z, Lan Y, Jiang R, Cserjesi P, Chen Y. Hand2 is required in the epithelium for palatogenesis in mice. Dev Biol. 2009;330:131–141. doi: 10.1016/j.ydbio.2009.03.021. PubMed DOI PMC

Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: One function, multiple origins. Am J Pathol. 2007;170:1807–1816. doi: 10.2353/ajpath.2007.070112. PubMed DOI PMC

Brenmoehl J, Miller SN, Hofmann C, Vogl D, Falk W, Schölmerich J, Rogler G. Transforming growth factor-β1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431. PubMed DOI PMC

Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Jr, Nakajima A, Shuler CF, Moses HL, Chai Y. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development. 2003;130:5269–5280. doi: 10.1242/dev.00708. PubMed DOI

Ichikawa E, Watanabe A, Nakano Y, Akita S, Hirano A, Kinoshita A, Kondo S, Kishino T, Uchiyama T, Niikawa N, et al. PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese: Population-based and family-based candidate gene analyses. J Hum Genet. 2006;51:38–46. doi: 10.1007/s10038-005-0319-8. PubMed DOI

Iwata J, Parada C, Chai Y. The mechanism of TGF-β signaling during palate development. Oral Dis. 2011;17:733–744. doi: 10.1111/j.1601-0825.2011.01806.x. PubMed DOI PMC

Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, et al. Retinoic acid, GABA-ergic, and TGF-β signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med. 2006;12:237–245. doi: 10.2119/2006-00026.Baroni. PubMed DOI PMC

Satish L, Kathju S. Cellular and molecular characteristics of scarless versus fibrotic wound healing. Dermatol Res Pract. 2010;2010:790234. PubMed PMC

Bermudez DM, Canning DA, Liechty KW. Age and proinflammatory cytokine production: Wound-healing implications for scar-formation and the timing of genital surgery in boys. J Pediatr Urol. 2011;7:324–331. doi: 10.1016/j.jpurol.2011.02.013. PubMed DOI

Whiting J. Craniofacial abnormalities induced by the ectopic expression of homeobox genes. Mutat Res. 1997;396:97–112. doi: 10.1016/S0027-5107(97)00177-2. PubMed DOI

Creuzet S, Couly G, Le Douarin NM. Patterning the neural crest derivatives during development of the vertebrate head: Insights from avian studies. J Anat. 2005;207:447–459. doi: 10.1111/j.1469-7580.2005.00485.x. PubMed DOI PMC

Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development. 2013;140:3951–3963. doi: 10.1242/dev.068346. PubMed DOI

McHeik JN, Sfalli P, Bondonny JM, Levard G. Early repair for infants with cleft lip and nose. Int J Pediatr Otorhinolaryngol. 2006;70:1785–1790. doi: 10.1016/j.ijporl.2006.06.004. PubMed DOI

Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: Fact and fiction. Regeneration (Oxf) 2015;2:149–168. doi: 10.1002/reg2.41. PubMed DOI PMC

Wang H, Qiu T, Shi J, Liang J, Wang Y, Quan L, Zhang Y, Zhang Q, Tao K. Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer. Mol Med Rep. 2016;13:2110–2116. doi: 10.3892/mmr.2016.4802. PubMed DOI PMC

Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Häkkinen L, Larjava HS. Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem. 2009;57:543–557. doi: 10.1369/jhc.2009.952572. PubMed DOI PMC

Zhu X, Li L, Zou L, Zhu X, Xian G, Li H, Tan Y, Xie L. A novel aptamer targeting TGF-β receptor II inhibits transdifferentiation of human tenon's fibroblasts into myofibroblast. Invest Ophthalmol Vis Sci. 2012;53:6897–6903. doi: 10.1167/iovs.12-10198. PubMed DOI

Chang Z, Kishimoto Y, Hasan A, Welham NV. TGF-β3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats. Dis Model Mech. 2014;7:83–91. doi: 10.1242/dmm.013326. PubMed DOI PMC

Sriram S, Gibson DJ, Robinson P, Pi L, Tuli S, Lewin AS, Schultz G. Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas. Exp Eye Res. 2014;125:173–182. doi: 10.1016/j.exer.2014.06.014. PubMed DOI PMC

Liang C, Li X, Zhang L, Cui D, Quan X, Yang W. The anti-fibrotic effects of microRNA-153 by targeting TGFBR-2 in pulmonary fibrosis. Exp Mol Pathol. 2015;99:279–285. doi: 10.1016/j.yexmp.2015.07.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...