Functional differences between neonatal and adult fibroblasts and keratinocytes: Donor age affects epithelial-mesenchymal crosstalk in vitro
Jazyk angličtina Země Řecko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27513730
PubMed Central
PMC5029973
DOI
10.3892/ijmm.2016.2706
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- buněčná diferenciace MeSH
- crista neuralis cytologie MeSH
- dárci tkání * MeSH
- dospělí MeSH
- epitelové buňky cytologie metabolismus MeSH
- fenotyp MeSH
- fibroblasty cytologie metabolismus MeSH
- fibronektiny biosyntéza MeSH
- imunohistochemie MeSH
- keratinocyty cytologie metabolismus MeSH
- kmenové buňky metabolismus MeSH
- kokultivační techniky MeSH
- lidé MeSH
- mezoderm cytologie MeSH
- myofibroblasty cytologie MeSH
- nestin metabolismus MeSH
- neuroplasticita MeSH
- novorozenec MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- stárnutí fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACTA2 protein, human MeSH Prohlížeč
- aktiny MeSH
- fibronektiny MeSH
- nestin MeSH
Clinical evidence suggests that healing is faster and almost scarless at an early neonatal age in comparison with that in adults. In this study, the phenotypes of neonatal and adult dermal fibroblasts and keratinocytes (nestin, smooth muscle actin, keratin types 8, 14 and 19, and fibronectin) were compared. Furthermore, functional assays (proliferation, migration, scratch wound closure) including mutual epithelial‑mesenchymal interactions were also performed to complete the series of experiments. Positivity for nestin and α smooth muscle actin was higher in neonatal fibroblasts (NFs) when compared with their adult counterparts (adult fibroblasts; AFs). Although the proliferation of NFs and AFs was similar, they significantly differed in their migration potential. The keratinocyte experiments revealed small, poorly differentiated cells (positive for keratins 8, 14 and 19) in primary cultures isolated from neonatal tissues. Moreover, the neonatal keratinocytes exhibited significantly faster rates of healing the experimentally induced in vitro defects in comparison with adult cells. Notably, the epithelial/mesenchymal interaction studies showed that NFs in co-culture with adult keratinocytes significantly stimulated the adult epithelial cells to acquire the phenotype of small, non-confluent cells expressing markers of poor differentiation. These results indicate the important differences between neonatal and adult cells that may be associated with improved wound healing during the early neonatal period.
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Molecular Genetics Academy of Sciences of the Czech Republic vvi Prague Czech Republic
Zobrazit více v PubMed
Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12:671–676. doi: 10.1006/cyto.1999.0598. PubMed DOI
Bukovsky A, Caudle MR, Carson RJ, Gaytán F, Huleihel M, Kruse A, Schatten H, Telleria CM. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine. Aging (Albany NY) 2009;1:157–181. doi: 10.18632/aging.100024. PubMed DOI PMC
Walraven M, Talhout W, Beelen RH, van Egmond M, Ulrich MM. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533–541. doi: 10.1111/wrr.12421. PubMed DOI
Han M, Yang X, Lee J, Allan CH, Muneoka K. Development and regeneration of the neonatal digit tip in mice. Dev Biol. 2008;315:125–135. doi: 10.1016/j.ydbio.2007.12.025. PubMed DOI PMC
Borsky J, Veleminska J, Jurovčík M, Kozak J, Hechtova D, Tvrdek M, Cerny M, Kabelka Z, Fajstavr J, Janota J, et al. Successful early neonatal repair of cleft lip within first 8 days of life. Int J Pediatr Otorhinolaryngol. 2012;76:1616–1626. doi: 10.1016/j.ijporl.2012.07.031. PubMed DOI
Krejčí E, Kodet O, Szabo P, Borský J, Smetana K, Jr, Grim M, Dvořánková B. In vitro differences of neonatal and later postnatal keratinocytes and dermal fibroblasts. Physiol Res. 2015;64:561–569. PubMed
Yamaguchi Y, Itami S, Tarutani M, Hosokawa K, Miura H, Yoshikawa K. Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. J Invest Dermatol. 1999;112:483–488. doi: 10.1046/j.1523-1747.1999.00544.x. PubMed DOI
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol. 2014;25–26:11–21. doi: 10.1016/j.semcdb.2014.01.007. PubMed DOI
Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia. 2006;11:187–203. doi: 10.1007/s10911-006-9029-x. PubMed DOI
Rawles ME. Tissue interactions in scale and feather development as studied in dermal-epidermal recombinations. J Embryol Exp Morphol. 1963;11:765–789. PubMed
Cohen BH, Lewis LA, Resnik SS. Would healing: a brief review. Int J Dermatol. 1975;14:722–726. doi: 10.1111/j.1365-4362.1975.tb00088.x. PubMed DOI
Kwon YB, Kim HW, Roh DH, Yoon SY, Baek RM, Kim JY, Kweon H, Lee KG, Park YH, Lee JH. Topical application of epidermal growth factor accelerates wound healing by myofibroblast proliferation and collagen synthesis in rat. J Vet Sci. 2006;7:105–109. doi: 10.4142/jvs.2006.7.2.105. PubMed DOI PMC
Smetana K, Jr, Szabo P, Gál P, André S, Gabius HJ, Kodet O, Dvořánková B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol Histopathol. 2015;30:293–309. PubMed
Dvořánková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E, Smetana K., Jr Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Smetana K, Jr, Dvořánková B, Szabo P, Strnad H, Koláø M. Role of stromal fibroblasts in cancer originated from squamous epithelia. In: Bai X, editor. Dermal Fibroblasts: Histological Perspectives, Characterization and Role in Disease. Nova Sciences; Publishers, New York: 2013. pp. 83–94.
Strnad H, Lacina L, Kolár M, Cada Z, Vlcek C, Dvoránková B, Betka J, Plzák J, Chovanec M, Sáchová J, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Lacina L, Smetana K, Jr, Dvoránková B, Pytlík R, Kideryová L, Kucerová L, Plzáková Z, Stork J, Gabius HJ, André S. Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes. Br J Dermatol. 2007;156:819–829. doi: 10.1111/j.1365-2133.2006.07728.x. PubMed DOI
Lacina L, Dvoránkova B, Smetana K, Jr, Chovanec M, Plzák J, Tachezy R, Kideryová L, Kucerová L, Cada Z, Boucek J, et al. Marker profiling of normal keratinocytes identifies the stroma from squamous cell carcinoma of the oral cavity as a modulatory microenvironment in co-culture. Int J Radiat Biol. 2007;83:837–848. doi: 10.1080/09553000701694343. PubMed DOI
Kolář M, Szabo P, Dvořánková B, Lacina L, Gabius HJ, Strnad H, Sáchová J, Vlček C, Plzák J, Chovanec M, et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Szabo P, Valach J, Smetana K, Jr, Dvořánková B. Comparative analysis of production of IL-8 and CXCL-1 by normal and cancer stromal fibroblasts. Folia Biol. 2013;59:134–147. PubMed
Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods. 1990;131:165–172. doi: 10.1016/0022-1759(90)90187-Z. PubMed DOI
Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:e3. PubMed
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
Valach J, Fík Z, Strnad H, Chovanec M, Plzák J, Cada Z, Szabo P, Sáchová J, Hroudová M, Urbanová M, et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors. Int J Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128. doi: 10.1186/1471-2105-14-128. PubMed DOI PMC
Hu YF, Zhang ZJ, Sieber-Blum M. An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Stem Cells. 2006;24:2692–702. doi: 10.1634/stemcells.2006-0233. PubMed DOI
Sellheyer K, Krahl D. Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovasculogenesis, and tumor stroma development: a study on embryonic and adult human skin. J Am Acad Dermatol. 2010;63:93–113. doi: 10.1016/j.jaad.2009.07.013. PubMed DOI
Chang Y, Guo K, Li Q, Li C, Guo Z, Li H. Multiple directional differentiation difference of neonatal rat fibroblasts from six organs. Cell Physiol Biochem. 2016;39:157–171. doi: 10.1159/000445613. PubMed DOI
Lane EB, McLean WH. Keratins and skin disorders. J Pathol. 2004;204:355–366. doi: 10.1002/path.1643. PubMed DOI
Tan KK, Salgado G, Connolly JE, Chan JK, Lane EB. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction. Stem Cell Rep. 2014;3:324–338. doi: 10.1016/j.stemcr.2014.06.005. PubMed DOI PMC
Casanova ML, Bravo A, Martínez-Palacio J, Fernández-Aceñero MJ, Villanueva C, Larcher F, Conti CJ, Jorcano JL. Epidermal abnormalities and increased malignancy of skin tumors in human epidermal keratin 8-expressing transgenic mice. FASEB J. 2004;18:1556–1558. PubMed
Klíma J, Motlík J, Gabius H-J, Smetana K., Jr Phenotypic characterization of porcine interfollicular keratinocytes separated by elutriation: a technical note. Folia Biol (Praha) 2007;53:33–36. PubMed
Kideryová L, Lacina L, Dvoránková B, Stork J, Cada Z, Szabo P, André S, Kaltner H, Gabius HJ, Smetana K., Jr Phenotypic characterization of human keratinocytes in coculture reveals differential effects of fibroblasts from benign fibrous histiocytoma (dermatofibroma) as compared to cells from its malignant form and to normal fibroblasts. J Dermatol Sci. 2009;55:18–26. doi: 10.1016/j.jdermsci.2009.03.009. PubMed DOI
Kodet O, Lacina L, Krejčí E, Dvořánková B, Grim M, Štork J, Kodetová D, Vlček Č, Šáchová J, Kolář M, et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC
Dvorak HF. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI
Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K., Jr Cancer microenvironment: what can we learn from the stem cell niche. Int J Mol Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC
Bermudez DM, Canning DA, Liechty KW. Age and pro-inflammatory cytokine production: wound-healing implications for scar-formation and the timing of genital surgery in boys. J Pediatr Urol. 2011;7:324–331. doi: 10.1016/j.jpurol.2011.02.013. PubMed DOI
Muneoka K, Allan CH, Yang X, Lee J, Han M. Mammalian regeneration and regenerative medicine. Birth Defects Res C Embryo Today. 2008;84:265–280. doi: 10.1002/bdrc.20137. PubMed DOI
Choi Y, Cox C, Lally K, Li Y. The strategy and method in modulating finger regeneration. Regen Med. 2014;9:231–242. doi: 10.2217/rme.13.98. PubMed DOI
Pratsinis H, Armatas A, Dimozi A, Lefaki M, Vassiliu P, Kletsas D. Paracrine anti-fibrotic effects of neonatal cells and living cell constructs on young and senescent human dermal fibroblasts. Wound Repair Regen. 2013;21:842–851. doi: 10.1111/wrr.12110. PubMed DOI
Kalfalah F, Seggewiß S, Walter R, Tigges J, Moreno-Villanueva M, Bürkle A, Ohse S, Busch H, Boerries M, Hildebrandt B, et al. Structural chromosome abnormalities, increased DNA strand breaks and DNA strand break repair deficiency in dermal fibroblasts from old female human donors. Aging (Albany NY) 2015;7:110–122. doi: 10.18632/aging.100723. PubMed DOI PMC
Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electronica. 2001;4:9pp.
Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes