Target antigens for Hs-14 monoclonal antibody and their various expression in normozoospermic and asthenozoospermic men
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26550480
PubMed Central
PMC4636759
DOI
10.1186/s12610-015-0025-0
PII: 25
Knihovny.cz E-zdroje
- Klíčová slova
- Acrosome, Asthenozoospermia, Human spermatozoa, Monoclonal antibody, Transitional endoplasmic reticulum ATPase,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Poor semen quality is one of the main causes of infertility. We have generated a set of monoclonal antibodies to human sperm and used them to investigate sperm quality. Some of these antibodies found differences in the expression of proteins between normal sperm and pathological sperm displaying severe defects. One of them was the Hs-14 antibody. The aim of this paper was to determine the target protein of the Hs-14 monoclonal antibody and to investigate the expression of the Hs-14-reacting protein on the sperm of asthenozoospermic men with sperm motility defect and of healthy normozoospermic men. METHODS: Indirect immunofluorescence, one-dimensional and two-dimensional polyacrylamide gel electrophoresis, immunoblotting and mass spectrometry. RESULTS: The Hs-14 antibody binds fibronectin, β-tubulin and valosin-containing protein - new name for this protein is transitional endoplasmic reticulum ATPase (TERA). Since the Hs-14 reaction with TERA remained the strongest at the highest antibody dilution, and Hs-14 consistently labelled the same spot or band as the monospecific anti-TERA antibody on immunoblots, we assume that TERA is an Hs-14-specific protein. Binding of fibronectin and β-tubulin might represent nonspecific cross-reactivity or Hs-14 reaction with similar epitopes of these proteins. A significant difference (P < 0.001) in immunofluorescence staining with Hs-14 was found between the normozoospermic and asthenozoospermic men. CONCLUSION: The Hs-14 antibody enables discrimination between sterile or subfertile asthenozoospermic and fertile normozoospermic men. Decreased levels of TERA in men can be used as a biomarker of reduced fertility.
INTRODUCTION: La pauvre qualité de la semence est l’une des causes d’infertilité. Nous avons généré une série d’anticorps monoclonaux contre le sperme humain et nous l’avons utilisée pour examiner la qualité du sperme. Certains de ces anticorps ont montré des différences d’ expression des protéines entre le sperme normal et le sperme pathologique qui a des défauts sévères. L’un d’eux a été l’anticorps Hs-14. Le but de cet article était de déterminer la protéine cible de l’anticorps monoclonal Hs-14 et d’établir l’expression de la protéine réagissant avec Hs-14 sur le sperme des hommes asthénozoospermiques qui ont des défauts de la mobilité du sperme et sur celui des hommes normozoospermiques. MÉTHODES: Immunofluorescence indirecte, electrophorèse sur gel polyacrylamide à une ou deux dimensions, immunoblotting et spectrométrie de masse. RÉSULTATS: L’anticorps Hs-14 s’attache à la fibronectine, à la β-tubuline et à la protéine TERA (ATPase transitoire de réticulum endoplasmique). Etant donné que la réaction du Hs-14 avec TERA a été la plus forte à la dilution la plus grande de l’anticorps, et que Hs-14 marquait systématiquement la même tache ou bande que l’anticorps mono-spécifique anti-TERA sur les immunoblots, nous supposons que TERA est une protéine spécifique pour Hs-14. L’attachement à la fibronectine et à la β-tubuline pourrait représenter une réaction croisée non spécifique ou la réaction du Hs-14 avec des épitopes similaires de ces protéines. Une différence significative (P < 0.001) en immunofluorescence avec Hs-14 a été révélée entre hommes normozoospermiques et asthénozoospermiques. CONCLUSIONS: L’anticorps Hs-14 permet de différencier les hommes stériles ou subfertiles asthénozoospermiques des hommes fertiles normozoospermiques. Les niveaux de la TERA chez les hommes pourraient être utilisés comme un marqueur biologique d’une fertilité réduite.
Zobrazit více v PubMed
WHO. WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. 5th ed. Cambridge: Cambridge University Press; 2010.
Reddy KV, Meherji PK, Shahani SK. Integrin cell adhesion molecules on human spermatozoa. Indian J Exp Biol. 1998;36(5):456–63. PubMed
Gadkar S, Shah CA, Sachdeva G, Samant U, Puri CP. Progesterone receptor as anindicator of sperm function. Biol Reprod. 2002;67(4):1327–36. doi: 10.1095/biolreprod67.4.1327. PubMed DOI
Nasr-Esfahani MH, Salehi M, Razavi S, Mardani M, Bahramian H, Steger K, Oreizi F. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biol Online. 2004;9(6):652–8. doi: 10.1016/S1472-6483(10)61776-2. PubMed DOI
Tepla O, Peknicova J, Koci K, Mika J, Mrazek M, Elzeinova F. Evaluation of reproductive potencial after intracytoplasmic sperm injection of varied human semen tested by antiacrosomal antibodies. Fertil Steril. 2006;86(1):113–20. doi: 10.1016/j.fertnstert.2005.12.019. PubMed DOI
Anahí Franchi N, Avedano C, Molina RI, Tissera AD, Maldonado CA, Oehninger S, Coronel CE. Beta-Microseminoprotein in human spermatozoa and its potential role in male fertility. Reproduction. 2008;136(2):157–66. doi: 10.1530/REP-08-0032. PubMed DOI
Sutovsky P, Lovercamp K. Molecular markers of sperm quality. Soc Reprod Fertil Suppl. 2010;67:247–56. PubMed
Peknicova J, Chladek D, Hozak P. Monoclonal antibodies against sperm intra- acrosomal antigens as markers for male infertility diagnostics and estimation of spermatogenesis. Am J Reprod Immunol. 2005;53:42–9. doi: 10.1111/j.1600-0897.2004.00245.x. PubMed DOI
Peknicova J, Kyselova V, Buckiova D, Boubelik M. Effect of an endocrine disruptor on mammalian fertility. Application of monoclonal antibodies against sperm proteins as markers for testing sperm damage. AJRI. 2002;47:311–8. PubMed
Kyselova V, Peknicova J, Boubelik M, Buckiova D. Body and organ weight, sperm acrosomal status and reproduction after genistein and diethylstibestrol treatment of CD1 mice in multigenerational study. Theriogenology. 2004;61:1307–25. doi: 10.1016/j.theriogenology.2003.07.017. PubMed DOI
Pixton KL, Deeks ED, Flesch FM, Moseley FLC, Bjorndahl L, Ashton R, Barratt CLR, Brevis IA. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum Reprod. 2004;19(6):1438–47. doi: 10.1093/humrep/deh224. PubMed DOI
Shimizu Y, Kodama H, Fukuda J, Tanaka T. Evidence of proacrosine molecule abnormality as a possible cause of low acrosin activity and unexplained failure of fertilization in vitro. J Androl. 1997;18(3):281–8. PubMed
Capkova J, Elzeinova F, Novak P. Increased expression of secretory actin-binding protein on human spermatozoa is associated with poor semen quality. Hum Reprod. 2007;22(5):1396–404. doi: 10.1093/humrep/del511. PubMed DOI
Oliva R, Martínez-Heredia J, Estanyol JM. Proteomics in the study of the sperm cell composition, differentiation and function. Syst Biol Reprod Med. 2008;54(1):23–36. doi: 10.1080/19396360701879595. PubMed DOI
duPlessis SS, Kashou AH, Benjamin DJ, Yadav SP, Agarval A. Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol. 2011;9:36. doi: 10.1186/1477-7827-9-36. PubMed DOI PMC
Baker MA, Nixon B, Naumovski N, Aitken RJ. Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med. 2012;58(4):211–7. doi: 10.3109/19396368.2011.639844. PubMed DOI
Liao TT, Xiang Z, Zhu WB, Fan LQ. Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electophoresis and mass spectrometry. Asian J Androl. 2009;11(6):638–93. doi: 10.1038/aja.2009.45. PubMed DOI PMC
Thacker S, Yadav SP, Sharma RK, Kashou A, Williard B, Zhang D, Agarval A. Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril. 2011;95(8):2745–8. doi: 10.1016/j.fertnstert.2011.03.112. PubMed DOI
Peknicova J, Capkova J, Cechova D, Sulcova B. Preparation and characterization of a monoclonal antibody against boar acrosin. Folia Biol (Praha) 1986;32:282–5. PubMed
Koubek P, Elzeinova F, Sulc M, Linhart O, Peknicova J. Monoclonal antibody FsC-47 against carp sperm creatine kinase. Hybridoma. 2006;25(3):154–7. doi: 10.1089/hyb.2006.25.154. PubMed DOI
Peknicova J, Moos J. Monoclonal antibodies against sperm intra-acrosomal antigens labelling undamaged acrosomes of spermatozoa in immunofluorescence test. Andrologia. 1990;22(5):427–35. doi: 10.1111/j.1439-0272.1990.tb02022.x. PubMed DOI
Moos J, Peknicova J. Monoclonal antibodies against progesterone. Am J Reprod Med. 1988;16:88.
Dráber P, Dráberová E, Linhartová I, Viklický V. Differences in the exposure of C-and N- terminal tubulin domains in cytoplasmic microtubules detected with domain-specific monoclonal antibodies. J Cell Sci. 1989;92:519–28. PubMed
Grimm E, Breitling F, Little M. Location of the epitope for the alpha-tubulin monoclonal antibody TU-01. Biochim Biophys Acta. 1987;914:83–8. doi: 10.1016/0167-4838(87)90164-6. PubMed DOI
Shelanski ML, Gaskin F, Cantor CR. Microtule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973;70:765–8. doi: 10.1073/pnas.70.3.765. PubMed DOI PMC
Dráber P, Dráberová E, Viklický V. Immunostaining of human spermatozoa with tubulin domain-specific monoclonal antibodies. Recognition of a unique beta- tubulin epitope in the sperm head. Histochemistry. 1991;95:319–24. doi: 10.1007/BF00315749. PubMed DOI
Laemmli UK. Cleavage of structural proteins during assembly of bacteriofage T4. Nature. 1970;227:680–5. doi: 10.1038/227680a0. PubMed DOI
Towbin H, Staehelin T, Gordon G. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC
Glander HJ, Schaller J, Rohwedder A, Henkel R. Adhesion molecules and matrix proteins on human spermatozoa. Andrologia. 1998;30(4-5):289–96. doi: 10.1111/j.1439-0272.1998.tb01173.x. PubMed DOI
Wennemuth G, Schiemann PJ, Krause W, Gressner AM, Aumuller G. Influence of fibronectin on the motility of human spermatozoa. Int J Androl. 1997;20(1):10–6. doi: 10.1046/j.1365-2605.1997.00005.x. PubMed DOI
Diaz ES, Kong M, Morales P. Effect of fibronectin on proteasome activity, acrosome reaction, tyrosine phosphorylation and intracellular calcium concentrations of human sperm. Hum Reprod. 2007;22(5):1420–30. doi: 10.1093/humrep/dem023. PubMed DOI
Thys M, Nauwynck H, Maes D, Hoogewijs M, Vercauteren D, Rijsselaere T, Favoreel H, Van Soom A. Expression and putative function of fibronectin and its receptor (integrin alpha(5)beta(1) in male and female gametes during bovine fertilization in vitro. Reproduction. 2009;138(3):471–82. doi: 10.1530/REP-09-0094. PubMed DOI
Wennemuth G, Meinhardt A, Mallidis C, Albrecht M, Krause W, Renneberg H, Aumuller G. Assessment of fibronectin as a potencial new clinical tool in andrology. Andrologia. 2001;33(1):43. doi: 10.1046/j.1439-0272.2001.00370.x. PubMed DOI
Attia AM, Hassan A, Zalata A, Hagag M, Yousef KE, Mostala T. Seminal fibronectin In fertile and infertile males. Andrologia. 2011;43(6):387–91. doi: 10.1111/j.1439-0272.2010.01056.x. PubMed DOI
Eddy EM, O’Brian DA. The spermatozoon. In: Knobil E, Neil JD, editors. The physiology of reproduction. New York: Raven; 1994.
Virtanen I, Badley RA, Paasivuo R, Lehto VP. Distinct cytoskeletal domains revealed in sperm cells. J Cell Biol. 1984;99:1083–91. doi: 10.1083/jcb.99.3.1083. PubMed DOI PMC
Peknicova J, Pexiderova M, Kubatova A, Koubek P, Tepla O, Sulimenko T, Draber P. Expression of beta-tubulin epitope in human with pathological spermiogram. Fertil Steril. 2007;88(2):1120–8. doi: 10.1016/j.fertnstert.2006.12.070. PubMed DOI
Dai RM, Li CC. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol. 2001;3:740–4. doi: 10.1038/35087056. PubMed DOI
Geussova G, Kalab P, Peknicova J. Valosine containing protein is a substrate of cAMP-activated boar sperm tyrosine kinase. Mol Reprod Dev. 2002;63:366–75. doi: 10.1002/mrd.10156. PubMed DOI
Ficarro S, Chertihin O, Westbrook A, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF, Visconti PE. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem. 2003;278(13):11579–89. doi: 10.1074/jbc.M202325200. PubMed DOI
Vigodner M, Shrivastava V, Gutstein LE, Schneider J, Nieves E, Goldstein M, Feliciano M, Callaway M. Localization and identification of sumoylated proteins in human sperm: excessive sumoylation is a marker of defective spermatozoa. Hum Reprod. 2013;28(1):210–23. doi: 10.1093/humrep/des317. PubMed DOI PMC
The Transgenerational Transmission of the Paternal Type 2 Diabetes-Induced Subfertility Phenotype