The Transgenerational Transmission of the Paternal Type 2 Diabetes-Induced Subfertility Phenotype
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34803926
PubMed Central
PMC8602877
DOI
10.3389/fendo.2021.763863
Knihovny.cz E-zdroje
- Klíčová slova
- GAPDS, TERA, diabetes, fertility, molecular biomarkers, offspring, sperm, testes,
- MeSH
- diabetes mellitus 2. typu krev chemicky indukované genetika MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- experimentální diabetes mellitus MeSH
- fenotyp * MeSH
- infertilita krev chemicky indukované genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- paternální dědičnost účinky léků genetika MeSH
- spermie účinky léků fyziologie MeSH
- streptozocin toxicita MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- streptozocin MeSH
Diabetes is a chronic metabolic disorder characterized by hyperglycemia and associated with many health complications due to the long-term damage and dysfunction of various organs. A consequential complication of diabetes in men is reproductive dysfunction, reduced fertility, and poor reproductive outcomes. However, the molecular mechanisms responsible for diabetic environment-induced sperm damage and overall decreased reproductive outcomes are not fully established. We evaluated the effects of type 2 diabetes exposure on the reproductive system and the reproductive outcomes of males and their male offspring, using a mouse model. We demonstrate that paternal exposure to type 2 diabetes mediates intergenerational and transgenerational effects on the reproductive health of the offspring, especially on sperm quality, and on metabolic characteristics. Given the transgenerational impairment of reproductive and metabolic parameters through two generations, these changes likely take the form of inherited epigenetic marks through the germline. Our results emphasize the importance of improving metabolic health not only in women of reproductive age, but also in potential fathers, in order to reduce the negative impacts of diabetes on subsequent generations.
Zobrazit více v PubMed
Fonseca VA. Defining and Characterizing the Progression of Type 2 Diabetes. Diabetes Care (2009) 32 Suppl 2:S151–6. doi: 10.2337/dc09-S301 PubMed DOI PMC
A. American Diabetes . Diagnosis and Classification of Diabetes Mellitus. Diabetes Care (2014) 37 Suppl 1:S81–90. doi: 10.2337/dc14-S081 PubMed DOI
Maiorino MI, Bellastella G, Esposito K. Diabetes and Sexual Dysfunction: Current Perspectives. Diabetes Metab Syndr Obes (2014) 7:95–105. doi: 10.2147/DMSO.S36455 PubMed DOI PMC
Hylmarova S, Stechova K, Pavlinkova G, Peknicova J, Macek M, Kvapil M. The Impact of Type 1 Diabetes Mellitus on Male Sexual Functions and Sex Hormone Levels. Endocr J (2020) 67:59–71. doi: 10.1507/endocrj.EJ19-0280 PubMed DOI
Andersson DP, Ekstrom U, Lehtihet M. Rigiscan Evaluation of Men With Diabetes Mellitus and Erectile Dysfunction and Correlation With Diabetes Duration, Age, BMI, Lipids and HbA1c. PloS One (2015) 10:e0133121. doi: 10.1371/journal.pone.0133121 PubMed DOI PMC
Dhindsa S, Furlanetto R, Vora M, Ghanim H, Chaudhuri A, Dandona P. Low Estradiol Concentrations in Men With Subnormal Testosterone Concentrations and Type 2 Diabetes. Diabetes Care (2011) 34:1854–9. doi: 10.2337/dc11-0208 PubMed DOI PMC
Mulholland J, Mallidis C, Agbaje I, McClure N. Male Diabetes Mellitus and Assisted Reproduction Treatment Outcome. Reprod BioMed Online (2011) 22:215–9. doi: 10.1016/j.rbmo.2010.10.005 PubMed DOI
La Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes Mellitus and Sperm Parameters. J Androl (2012) 33:145–53. doi: 10.2164/jandrol.111.013193 PubMed DOI
Agbaje IM, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C, et al. . Insulin Dependant Diabetes Mellitus: Implications for Male Reproductive Function. Hum Reprod (2007) 22:1871–7. doi: 10.1093/humrep/dem077 PubMed DOI
Bhattacharya SM, Ghosh M, Nandi N. Diabetes Mellitus and Abnormalities in Semen Analysis. J Obstet Gynaecol Res (2014) 40:167–71. doi: 10.1111/jog.12149 PubMed DOI
Oyen N, Diaz LJ, Leirgul E, Boyd HA, Priest J, Mathiesen ER, et al. . Prepregnancy Diabetes and Offspring Risk of Congenital Heart Disease: A Nationwide Cohort Study. Circulation (2016) 133:2243–53. doi: 10.1161/CIRCULATIONAHA.115.017465 PubMed DOI PMC
Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of Maternal Diabetes on the Embryo, Fetus, and Children: Congenital Anomalies, Genetic and Epigenetic Changes and Developmental Outcomes. Birth Defects Res C Embryo Today (2015) 105:53–72. doi: 10.1002/bdrc.21090 PubMed DOI
West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular Risk Factors in Children Exposed to Maternal Diabetes In Utero. Diabetologia (2011) 54:504–7. doi: 10.1007/s00125-010-2008-1 PubMed DOI PMC
Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. . Intrauterine Exposure to Diabetes Conveys Risks for Type 2 Diabetes and Obesity: A Study of Discordant Sibships. Diabetes (2000) 49:2208–11. doi: 10.2337/diabetes.49.12.2208 PubMed DOI
Martin AO, Simpson JL, Ober C, Freinkel N. Frequency of Diabetes Mellitus in Mothers of Probands With Gestational Diabetes: Possible Maternal Influence on the Predisposition to Gestational Diabetes. Am J Obstet Gynecol (1985) 151:471–5. doi: 10.1016/0002-9378(85)90272-8 PubMed DOI
Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P, et al. . Effect of a Diabetic Environment In Utero on Predisposition to Type 2 Diabetes. Lancet (2003) 361:1861–5. doi: 10.1016/S0140-6736(03)13505-2 PubMed DOI
Manderson JG, Mullan B, Patterson CC, Hadden DR, Traub AI, McCance DR. Cardiovascular and Metabolic Abnormalities in the Offspring of Diabetic Pregnancy. Diabetologia (2002) 45:991–6. doi: 10.1007/s00125-002-0865-y PubMed DOI
Loffredo CA, Wilson PD, Ferencz C. Maternal Diabetes: An Independent Risk Factor for Major Cardiovascular Malformations With Increased Mortality of Affected Infants. Teratology (2001) 64:98–106. doi: 10.1002/tera.1051 PubMed DOI
Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, et al. . Adverse Effects of Hif1a Mutation and Maternal Diabetes on the Offspring Heart. Cardiovasc Diabetol (2018) 17:68. doi: 10.1186/s12933-018-0713-0 PubMed DOI PMC
Dunn GA, Bale TL. Maternal High-Fat Diet Effects on Third-Generation Female Body Size via the Paternal Lineage. Endocrinology (2011) 152:2228–36. doi: 10.1210/en.2010-1461 PubMed DOI PMC
Gniuli D, Calcagno A, Caristo ME, Mancuso A, Macchi V, Mingrone G, et al. . Effects of High-Fat Diet Exposure During Fetal Life on Type 2 Diabetes Development in the Progeny. J Lipid Res (2008) 49:1936–45. doi: 10.1194/jlr.M800033-JLR200 PubMed DOI
Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-Gestational vs Gestational Exposure to Maternal Obesity Differentially Programs the Offspring in Mice. Diabetologia (2015) 58:615–24. doi: 10.1007/s00125-014-3466-7 PubMed DOI PMC
Aerts L, Van Assche FA. Animal Evidence for the Transgenerational Development of Diabetes Mellitus. Int J Biochem Cell Biol (2006) 38:894–903. doi: 10.1016/j.biocel.2005.07.006 PubMed DOI
Huypens P, Sass S, Wu M, Dyckhoff D, Tschop M, Theis F, et al. . Epigenetic Germline Inheritance of Diet-Induced Obesity and Insulin Resistance. Nat Genet (2016) 48:497–9. doi: 10.1038/ng.3527 PubMed DOI
Patti ME. Intergenerational Programming of Metabolic Disease: Evidence From Human Populations and Experimental Animal Models. Cell Mol Life Sci (2013) 70:1597–608. doi: 10.1007/s00018-013-1298-0 PubMed DOI PMC
Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic High-Fat Diet in Fathers Programs Beta-Cell Dysfunction in Female Rat Offspring. Nature (2010) 467:963–6. doi: 10.1038/nature09491 PubMed DOI
Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, et al. . Paternal Obesity Initiates Metabolic Disturbances in Two Generations of Mice With Incomplete Penetrance to the F2 Generation and Alters the Transcriptional Profile of Testis and Sperm microRNA Content. FASEB J (2013) 27:4226–43. doi: 10.1096/fj.12-224048 PubMed DOI
Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, et al. . Paternally Induced Transgenerational Inheritance of Susceptibility to Diabetes in Mammals. Proc Natl Acad Sci USA (2014) 111:1873–8. doi: 10.1073/pnas.1321195111 PubMed DOI PMC
Pavlinkova G, Margaryan H, Zatecka E, Valaskova E, Elzeinova F, Kubatova A, et al. . Transgenerational Inheritance of Susceptibility to Diabetes-Induced Male Subfertility. Sci Rep (2017) 7:4940. doi: 10.1038/s41598-017-05286-0 PubMed DOI PMC
Winzell MS, Ahren B. The High-Fat Diet-Fed Mouse: A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes. Diabetes (2004) 53 Suppl 3:S215–9. doi: 10.2337/diabetes.53.suppl_3.S215 PubMed DOI
Dostalova P, Zatecka E, Ded L, Elzeinova F, Valaskova E, Kubatova A, et al. . Gestational and Pubertal Exposure to Low Dose of Di-(2-Ethylhexyl) Phthalate Impairs Sperm Quality in Adult Mice. Reprod Toxicol (2020) 96:175–84. doi: 10.1016/j.reprotox.2020.06.014 PubMed DOI
Elzeinova F, Novakova V, Buckiova D, Kubatova A, Peknicova J. Effect of Low Dose of Vinclozolin on Reproductive Tract Development and Sperm Parameters in CD1 Outbred Mice. Reprod Toxicol (2008) 26:231–8. doi: 10.1016/j.reprotox.2008.09.007 PubMed DOI
Capkova J, Margaryan H, Kubatova A, Novak P, Peknicova J. Target Antigens for Hs-14 Monoclonal Antibody and Their Various Expression in Normozoospermic and Asthenozoospermic Men. Basic Clin Androl (2015) 25:11. doi: 10.1186/s12610-015-0025-0 PubMed DOI PMC
Margaryan H, Dorosh A, Capkova J, Manaskova-Postlerova P, Philimonenko A, Hozak P, et al. . Characterization and Possible Function of Glyceraldehyde-3-Phosphate Dehydrogenase-Spermatogenic Protein GAPDHS in Mammalian Sperm. Reprod Biol Endocrinol (2015) 13:15. doi: 10.1186/s12958-015-0008-1 PubMed DOI PMC
Tepla O, Peknicova J, Koci K, Mika J, Mrazek M, Elzeinova F. Evaluation of Reproductive Potential After Intracytoplasmic Sperm Injection of Varied Human Semen Tested by Antiacrosomal Antibodies. Fertil Steril (2006) 86:113–20. doi: 10.1016/j.fertnstert.2005.12.019 PubMed DOI
Capkova J, Kubatova A, Ded L, Tepla O, Peknicova J. Evaluation of the Expression of Sperm Proteins in Normozoospermic and Asthenozoospermic Men Using Monoclonal Antibodies. Asian J Androl (2016) 18:108–13. doi: 10.4103/1008-682X.151400 PubMed DOI PMC
Peknicova J, Chladek D, Hozak P. Monoclonal Antibodies Against Sperm Intra-Acrosomal Antigens as Markers for Male Infertility Diagnostics and Estimation of Spermatogenesis. Am J Reprod Immunol (2005) 53:42–9. doi: 10.1111/j.1600-0897.2004.00245.x PubMed DOI
Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R, et al. . Nongenetic Mouse Models of Non-Insulin-Dependent Diabetes Mellitus. Metabolism (1998) 47:663–8. doi: 10.1016/S0026-0495(98)90027-0 PubMed DOI
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional Cloning of the Mouse Obese Gene and Its Human Homologue. Nature (1994) 372:425–32. doi: 10.1038/372425a0 PubMed DOI
D'Souza A M, Johnson JD, Clee SM, Kieffer TJ. Suppressing Hyperinsulinemia Prevents Obesity But Causes Rapid Onset of Diabetes in Leptin-Deficient Lep(ob/ob) Mice. Mol Metab (2016) 5:1103–12. doi: 10.1016/j.molmet.2016.09.007 PubMed DOI PMC
Leifheit-Nestler M, Wagner NM, Gogiraju R, Didie M, Konstantinides S, Hasenfuss G, et al. . Importance of Leptin Signaling and Signal Transducer and Activator of Transcription-3 Activation in Mediating the Cardiac Hypertrophy Associated With Obesity. J Transl Med (2013) 11:170. doi: 10.1186/1479-5876-11-170 PubMed DOI PMC
Castillo J, Amaral A, Oliva R. Sperm Nuclear Proteome and Its Epigenetic Potential. Andrology (2014) 2:326–38. doi: 10.1111/j.2047-2927.2013.00170.x PubMed DOI
Oliva R. Protamines and Male Infertility. Hum Reprod Update (2006) 12:417–35. doi: 10.1093/humupd/dml009 PubMed DOI
Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. . Glyceraldehyde 3-Phosphate Dehydrogenase-S, a Sperm-Specific Glycolytic Enzyme, Is Required for Sperm Motility and Male Fertility. Proc Natl Acad Sci USA (2004) 101:16501–6. doi: 10.1073/pnas.0407708101 PubMed DOI PMC
Eddy EM, O'Brien DA, Welch JE. Mammalian Sperm Development In Vivo and In Vitro. Boston: CRC Press; (1991).
Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. The Murine SCP3 Gene Is Required for Synaptonemal Complex Assembly, Chromosome Synapsis, and Male Fertility. Mol Cell (2000) 5:73–83. doi: 10.1016/S1097-2765(00)80404-9 PubMed DOI
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, et al. . The Roles and Mechanisms of Leydig Cells and Myoid Cells in Regulating Spermatogenesis. Cell Mol Life Sci (2019) 76:2681–95. doi: 10.1007/s00018-019-03101-9 PubMed DOI PMC
Dutta S, Sengupta P. Men and Mice: Relating Their Ages. Life Sci (2016) 152:244–8. doi: 10.1016/j.lfs.2015.10.025 PubMed DOI
Flurkey K, Currer JM, Harrison DE. Mouse Models in Aging Research. Cambridge, Massachusetts: Academic Press; (2007).
Kimmins S, Sassone-Corsi P. Chromatin Remodelling and Epigenetic Features of Germ Cells. Nature (2005) 434:583–9. doi: 10.1038/nature03368 PubMed DOI
Lismer A, Siklenka K, Lafleur C, Dumeaux V, Kimmins S. Sperm Histone H3 Lysine 4 Trimethylation Is Altered in a Genetic Mouse Model of Transgenerational Epigenetic Inheritance. Nucleic Acids Res (2020) 48:11380–93. doi: 10.1093/nar/gkaa712 PubMed DOI PMC
Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, et al. . Haploinsufficiency of Protamine-1 or -2 Causes Infertility in Mice. Nat Genet (2001) 28:82–6. doi: 10.1038/ng0501-82 PubMed DOI
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. . Sperm tsRNAs Contribute to Intergenerational Inheritance of an Acquired Metabolic Disorder. Science (2016) 351:397–400. doi: 10.1126/science.aad7977 PubMed DOI
Lambrot R, Xu C, Saint-Phar S, Chountalos G, Cohen T, Paquet M, et al. . Low Paternal Dietary Folate Alters the Mouse Sperm Epigenome and Is Associated With Negative Pregnancy Outcomes. Nat Commun (2013) 4:2889. doi: 10.1038/ncomms3889 PubMed DOI PMC
Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. . Paternally Induced Transgenerational Environmental Reprogramming of Metabolic Gene Expression in Mammals. Cell (2010) 143:1084–96. doi: 10.1016/j.cell.2010.12.008 PubMed DOI PMC
Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility. Science (2005) 308:1466–9. doi: 10.1126/science.1108190 PubMed DOI PMC
Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. . In Utero Effects. In Utero Undernourishment Perturbs the Adult Sperm Methylome and Intergenerational Metabolism. Science (2014) 345:1255903. doi: 10.1126/science.1255903 PubMed DOI PMC
Bao J, Bedford MT. Epigenetic Regulation of the Histone-to-Protamine Transition During Spermiogenesis. Reproduction (2016) 151:R55–70. doi: 10.1530/REP-15-0562 PubMed DOI PMC
Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, et al. . Polar Nuclear Localization of H1T2, a Histone H1 Variant, Required for Spermatid Elongation and DNA Condensation During Spermiogenesis. Proc Natl Acad Sci USA (2005) 102:2808–13. doi: 10.1073/pnas.0406060102 PubMed DOI PMC
Greer EL, Beese-Sims SE, Brookes E, Spadafora R, Zhu Y, Rothbart SB, et al. . A Histone Methylation Network Regulates Transgenerational Epigenetic Memory in C. Elegans. Cell Rep (2014) 7:113–26. doi: 10.1016/j.celrep.2014.02.044 PubMed DOI PMC
Lee K, Haugen HS, Clegg CH, Braun RE. Premature Translation of Protamine 1 mRNA Causes Precocious Nuclear Condensation and Arrests Spermatid Differentiation in Mice. Proc Natl Acad Sci USA (1995) 92:12451–5. doi: 10.1073/pnas.92.26.12451 PubMed DOI PMC
Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and Exchange of Basic Nuclear Proteins Are Impaired in Male Germ Cells Lacking Camk4. Nat Genet (2000) 25:448–52. doi: 10.1038/78153 PubMed DOI
Brunner AM, Nanni P, Mansuy IM. Epigenetic Marking of Sperm by Post-Translational Modification of Histones and Protamines. Epigenet Chromatin (2014) 7:2. doi: 10.1186/1756-8935-7-2 PubMed DOI PMC
Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, et al. . Protamine 2 Deficiency Leads to Sperm DNA Damage and Embryo Death in Mice. Biol Reprod (2003) 69:211–7. doi: 10.1095/biolreprod.102.015115 PubMed DOI
Carrell DT, Emery BR, Hammoud S. The Aetiology of Sperm Protamine Abnormalities and Their Potential Impact on the Sperm Epigenome. Int J Androl (2008) 31:537–45. doi: 10.1111/j.1365-2605.2008.00872.x PubMed DOI
de Mateo S, Gazquez C, Guimera M, Balasch J, Meistrich ML, Ballesca JL, et al. . Protamine 2 Precursors (Pre-P2), Protamine 1 to Protamine 2 Ratio (P1/P2), and Assisted Reproduction Outcome. Fertil Steril (2009) 91:715–22. doi: 10.1016/j.fertnstert.2007.12.047 PubMed DOI
Kort HI, Massey JB, Elsner CW, Mitchell-Leef D, Shapiro DB, Witt MA, et al. . Impact of Body Mass Index Values on Sperm Quantity and Quality. J Androl (2006) 27:450–2. doi: 10.2164/jandrol.05124 PubMed DOI
Jensen TK, Andersson AM, Jorgensen N, Andersen AG, Carlsen E, Petersen JH, et al. . Body Mass Index in Relation to Semen Quality and Reproductive Hormones Among 1,558 Danish Men. Fertil Steril (2004) 82:863–70. doi: 10.1016/j.fertnstert.2004.03.056 PubMed DOI
Magnusdottir EV, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent Organochlorines, Sedentary Occupation, Obesity and Human Male Subfertility. Hum Reprod (2005) 20:208–15. doi: 10.1093/humrep/deh569 PubMed DOI
Mansor LS, Gonzalez ER, Cole MA, Tyler DJ, Beeson JH, Clarke K, et al. . Cardiac Metabolism in a New Rat Model of Type 2 Diabetes Using High-Fat Diet With Low Dose Streptozotocin. Cardiovasc Diabetol (2013) 12:136. doi: 10.1186/1475-2840-12-136 PubMed DOI PMC
Fang JY, Lin CH, Huang TH, Chuang SY. In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity. Nutrients (2019) 11:530. doi: 10.3390/nu11030530 PubMed DOI PMC
Pinhas-Hamiel O, Zeitler P. Acute and Chronic Complications of Type 2 Diabetes Mellitus in Children and Adolescents. Lancet (2007) 369:1823–31. doi: 10.1016/S0140-6736(07)60821-6 PubMed DOI
Hanley AJ, Williams K, Festa A, Wagenknecht LE, D'Agostino RB, Jr., Kempf J, et al. . Elevations in Markers of Liver Injury and Risk of Type 2 Diabetes: The Insulin Resistance Atherosclerosis Study. Diabetes (2004) 53:2623–32. doi: 10.2337/diabetes.53.10.2623 PubMed DOI
Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, et al. . CNS Myelin and Sertoli Cell Tight Junction Strands Are Absent in Osp/claudin-11 Null Mice. Cell (1999) 99:649–59. doi: 10.1016/S0092-8674(00)81553-6 PubMed DOI
Jiang X, Ma T, Zhang Y, Zhang H, Yin S, Zheng W, et al. . Specific Deletion of Cdh2 in Sertoli Cells Leads to Altered Meiotic Progression and Subfertility of Mice. Biol Reprod (2015) 92:79. doi: 10.1095/biolreprod.114.126334 PubMed DOI
Eftekhari A, Vahed SZ, Kavetskyy T, Rameshrad M, Jafari S, Chodari L, et al. . Cell Junction Proteins: Crossing the Glomerular Filtration Barrier in Diabetic Nephropathy. Int J Biol Macromol (2020) 148:475–82. doi: 10.1016/j.ijbiomac.2020.01.168 PubMed DOI
Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. Body Mass Index in Relation to Semen Quality, Sperm DNA Integrity, and Serum Reproductive Hormone Levels Among Men Attending an Infertility Clinic. Fertil Steril (2010) 93:2222–31. doi: 10.1016/j.fertnstert.2009.01.100 PubMed DOI PMC
Palmer NO, Fullston T, Mitchell M, Setchell BP, Lane M. SIRT6 in Mouse Spermatogenesis Is Modulated by Diet-Induced Obesity. Reprod Fertil Dev (2011) 23:929–39. doi: 10.1071/RD10326 PubMed DOI
Bakos HW, Mitchell M, Setchell BP, Lane M. The Effect of Paternal Diet-Induced Obesity on Sperm Function and Fertilization in a Mouse Model. Int J Androl (2011) 34:402–10. doi: 10.1111/j.1365-2605.2010.01092.x PubMed DOI
Navarro-Casado L, Juncos-Tobarra MA, Chafer-Rudilla M, de Onzono LI, Blazquez-Cabrera JA, Miralles-Garcia JM. Effect of Experimental Diabetes and STZ on Male Fertility Capacity. Study in rats. J Androl (2010) 31:584–92. doi: 10.2164/jandrol.108.007260 PubMed DOI
Crisostomo L, Rato L, Jarak I, Silva BM, Raposo JF, Batterham RL, et al. . A Switch From High-Fat to Normal Diet Does Not Restore Sperm Quality But Prevents Metabolic Syndrome. Reproduction (2019) 158:377–87. doi: 10.1530/REP-19-0259 PubMed DOI
Fullston T, Palmer NO, Owens JA, Mitchell M, Bakos HW, Lane M. Diet-Induced Paternal Obesity in the Absence of Diabetes Diminishes the Reproductive Health of Two Subsequent Generations of Mice. Hum Reprod (2012) 27:1391–400. doi: 10.1093/humrep/des030 PubMed DOI
Crisostomo L, Jarak I, Rato LP, Raposo JF, Batterham RL, Oliveira PF, et al. . Inheritable Testicular Metabolic Memory of High-Fat Diet Causes Transgenerational Sperm Defects in Mice. Sci Rep (2021) 11:9444. doi: 10.1038/s41598-021-88981-3 PubMed DOI PMC
Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, et al. . Phosphoproteome Analysis of Capacitated Human Sperm. Evidence of Tyrosine Phosphorylation of a Kinase-Anchoring Protein 3 and Valosin-Containing Protein/P97 During Capacitation. J Biol Chem (2003) 278:11579–89. doi: 10.1074/jbc.M202325200 PubMed DOI
Bunch DO, Welch JE, Magyar PL, Eddy EM, O'Brien DA. Glyceraldehyde 3-Phosphate Dehydrogenase-S Protein Distribution During Mouse Spermatogenesis. Biol Reprod (1998) 58:834–41. doi: 10.1095/biolreprod58.3.834 PubMed DOI
Zatecka E, Castillo J, Elzeinova F, Kubatova A, Ded L, Peknicova J, et al. . The Effect of Tetrabromobisphenol A on Protamine Content and DNA Integrity in Mouse Spermatozoa. Andrology (2014) 2:910–7. doi: 10.1111/j.2047-2927.2014.00257.x PubMed DOI
Ausio J. Presence of a Highly Specific Histone H1-Like Protein in the Chromatin of the Sperm of the Bivalve Mollusks. Mol Cell Biochem (1992) 115:163–72. doi: 10.1007/BF00230327 PubMed DOI