Maternal-Fetal Microchimerism: Impacts on Offspring's Immune Development and Transgenerational Immune Memory Transfer
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39027950
PubMed Central
PMC11299782
DOI
10.33549/physiolres.935296
PII: 935296
Knihovny.cz E-zdroje
- MeSH
- chimérismus * MeSH
- imunologická paměť * MeSH
- lidé MeSH
- maternofetální výměna látek * imunologie MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Maternal-fetal microchimerism is a fascinating phenomenon in which maternal cells migrate to the tissues of the offspring during both pregnancy and breastfeeding. These cells primarily consist of leukocytes and stem cells. Remarkably, these maternal cells possess functional potential in the offspring and play a significant role in shaping their immune system development. T lymphocytes, a cell population mainly found in various tissues of the offspring, have been identified as the major cell type derived from maternal microchimerism. These T lymphocytes not only exert effector functions but also influence the development of the offspring's T lymphocytes in the thymus and the maturation of B lymphocytes in the lymph nodes. Furthermore, the migration of maternal leukocytes also facilitates the transfer of immune memory across generations. Maternal microchimerism has also been observed to address immunodeficiencies in the offspring. This review article focuses on investigating the impact of maternal cells transported within maternal microchimerism on the immune system development of the offspring, as well as elucidating the effector functions of maternal cells that migrate through the placenta and breast milk to reach the offspring.
Zobrazit více v PubMed
Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol. 2012;33:421–427. doi: 10.1016/j.it.2012.03.002. PubMed DOI PMC
Loubière LS, Lambert NC, Flinn LJ, Erickson TD, Yan Z, Guthrie KA, Vickers KT, Nelson JL. Maternal microchimerism in healthy adults in lymphocytes, monocyte/macrophages and NK cells. Lab Invest. 2006;86:1185–1192. doi: 10.1038/labinvest.3700471. PubMed DOI
Vernochet C, Caucheteux SM, Kanellopoulos-Langevin C. Bi-directional Cell Trafficking Between Mother and Fetus in Mouse Placenta. Placenta. 2007;28:639–649. doi: 10.1016/j.placenta.2006.10.006. PubMed DOI
Stelzer IA, Urbschat C, Schepanski S, Thiele K, Triviai I, Wieczorek A, Alawi M, et al. Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun. 2021;12:4706. doi: 10.1038/s41467-021-24719-z. PubMed DOI PMC
Wang Y, Iwatani H, Ito T, Horimoto N, Yamato M, Matsui I, Imai E, Hori M. Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun. 2004;325:961–967. doi: 10.1016/j.bbrc.2004.10.105. PubMed DOI
Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: A review and evolutionary analysis of cooperation and conflict beyond the womb. BioEssays. 2015;37:1106–1118. doi: 10.1002/bies.201500059. PubMed DOI PMC
Rao AS, Thomson AW, Shapiro R, Starzl TE. Chimerism after whole organ transplantation: its relationship to graft rejection and tolerance induction. Curr Opin Nephrol Hypertens. 1994;3:589–595. doi: 10.1097/00041552-199411000-00005. PubMed DOI
Stelzer IA, Thiele K, Solano ME. Maternal microchimerism: lessons learned from murine models. J Reprod Immunol. 2015;108:12–25. doi: 10.1016/j.jri.2014.12.007. PubMed DOI
Dutta P, Molitor-Dart M, Bobadilla JL, Roenneburg DA, Yan Z, Torrealba JR, Burlingham WJ. Microchimerism is strongly correlated with tolerance to noninherited maternal antigens in mice. Blood. 2009;114:3578–3587. doi: 10.1182/blood-2009-03-213561. PubMed DOI PMC
Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, Sant'Angelo D, et al. Transfer of Maternal Immune Cells by Breastfeeding: Maternal Cytotoxic T Lymphocytes Present in Breast Milk Localize in the Peyer's Patches of the Nursed Infant. PLoS One. 2016;11:e0156762. doi: 10.1371/journal.pone.0156762. PubMed DOI PMC
Stevens AM, Hermes HM, Kiefer MM, Rutledge JC, Lee Nelson J. Chimeric Maternal Cells with Tissue-Specific Antigen Expression and Morphology Are Common in Infant Tissues. Pediatr Dev Pathol. 2009;12:337–346. doi: 10.2350/08-07-0499.1. PubMed DOI PMC
Hassiotou F, Heath B, Ocal O, Filgueira L, Geddes D, Hartmann P, Wilkie T. Breastmilk stem cell transfer from mother to neonatal organs. FASEB J. 2014;28(Suppl 1):216.4. doi: 10.1096/fasebj.28.1_supplement.216.4. DOI
Dutta P, Burlingham WJ. Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism. 2010;1:2–10. doi: 10.4161/chim.1.1.12667. PubMed DOI PMC
Cuddapah Sunku C, Gadi V, de Laval de Lacoste B, Guthrie KA, Nelson JL. Maternal and fetal microchimerism in granulocytes. Chimerism. 2010;1:11–14. doi: 10.4161/chim.1.1.13098. PubMed DOI PMC
Mauer AM, Athens JW, Ashenbrucker H, Cartwright GE, Wintrobe MM. Leukokinetic Studies. Ii. A Method For Labeling Granulocytes In Vitro With Radioactive Diisopropylfluorophosphate (DFP32) J Clin Invest. 1960;39:1481–1486. doi: 10.1172/JCI104167. PubMed DOI PMC
Wrenshall LE, Stevens ET, Smith DR, Miller JD. Maternal microchimerism leads to the presence of interleukin-2 in interleukin-2 knock out mice: Implications for the role of interleukin-2 in thymic function. Cell Immunol. 2007;245:80–90. doi: 10.1016/j.cellimm.2007.04.002. PubMed DOI PMC
Arvola M, Gustafsson E, Svensson L, Jansson L, Holmdahl R, Heyman B, Okabe M, Mattsson R. Immunoglobulin-Secreting Cells of Maternal Origin Can Be Detected in B Cell-Deficient Mice. Biol Reprod. 2000;63:1817–1824. doi: 10.1095/biolreprod63.6.1817. PubMed DOI
Fujimoto K, Nakajima A, Hori S, Irie N. Whole embryonic detection of maternal microchimeric cells highlights significant differences in their numbers among individuals. PLoS One. 2021;16:e0261357. doi: 10.1371/journal.pone.0261357. PubMed DOI PMC
Berry SM, Hassan SS, Russell E, Kukuruga D, Land S, Kaplan J. Association of Maternal Histocompatibility at Class II HLA Loci with Maternal Microchimerism in the Fetus. Pediatr Res. 2004;56:73–78. doi: 10.1203/01.PDR.0000129656.10005.A6. PubMed DOI
Kaplan J, Land S. Influence of Maternal-Fetal Histocompatibility and MHC Zygosity on Maternal Microchimerism. J Immunol. 2005;174:7123–7128. doi: 10.4049/jimmunol.174.11.7123. PubMed DOI
Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, Way SS. Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells. Cell. 2015;162:505–515. doi: 10.1016/j.cell.2015.07.006. PubMed DOI PMC
Mold JE, Michaëlsson J, Burt TD, Muench MO, Beckerman KP, Busch MP, Lee T-H, et al. Maternal Alloantigens Promote the Development of Tolerogenic Fetal Regulatory T Cells in Utero. Science. 2008;322:1562–1565. doi: 10.1126/science.1164511. PubMed DOI PMC
Hossain S, Mihrshahi S. Exclusive Breastfeeding and Childhood Morbidity: A Narrative Review. Int J Environ Res Public Health. 2022;19:14804. doi: 10.3390/ijerph192214804. PubMed DOI PMC
Karlmark KR, Haddad ME, Donato X-C, Martin GV, Bretelle F, Lesavre N, Cocallemen J-F, et al. Grandmaternal cells in cord blood. eBioMedicine. 2021;74:103721. doi: 10.1016/j.ebiom.2021.103721. PubMed DOI PMC
Shimamura M, Ohta S, Suzuki R, Yamazaki K. Transmission of maternal blood cells to the fetus during pregnancy: detection in mouse neonatal spleen by immunofluorescence flow cytometry and polymerase chain reaction. Blood. 1994;83:926–930. doi: 10.1182/blood.V83.4.926.926. PubMed DOI
Hall J, Lingenfelter P, Adams S, Lasser D, Hansen J, Bean M. Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood. 1995;86:2829–2832. doi: 10.1182/blood.V86.7.2829.2829. PubMed DOI
Piotrowski P, Croy BA. Maternal Cells are Widely Distributed in Murine Fetuses in Utero1. Biol Reprod. 1996;54:1103–1110. doi: 10.1095/biolreprod54.5.1103. PubMed DOI
Su EC, Johnson KL, Tighiouart H, Bianchi DW. Murine Maternal Cell Microchimerism: Analysis Using Real-Time PCR and In Vivo Imaging. Biol Reprod. 2008;78:883–887. doi: 10.1095/biolreprod.107.063305. PubMed DOI PMC
Darby MG, Chetty A, Mrjden D, Rolot M, Smith K, Mackowiak C, Sedda D, et al. Pre-conception maternal helminth infection transfers via nursing long-lasting cellular immunity against helminths to offspring. Sci Adv. 2019;5:eaav3058. doi: 10.1126/sciadv.aav3058. PubMed DOI PMC
Ståhlberg A, El-Heliebi A, Sedlmayr P, Kroneis T. Unravelling the biological secrets of microchimerism by single-cell analysis. Brief Funct Genomics. 2018;17:255–264. doi: 10.1093/bfgp/elx027. PubMed DOI PMC
Fujimoto K, Nakajima A, Hori S, Tanaka Y, Shirasaki Y, Uemura S, Irie N. Whole-embryonic identification of maternal microchimeric cell types in mouse using single-cell RNA sequencing. Sci Rep. 2022;12:18313. doi: 10.1038/s41598-022-20781-9. PubMed DOI PMC
Camacho-Morales A, Caba M, García-Juárez M, Caba-Flores MD, Viveros-Contreras R, Martínez-Valenzuela C. Breastfeeding Contributes to Physiological Immune Programming in the Newborn. Front Pediatr. 2021;9:744104. doi: 10.3389/fped.2021.744104. PubMed DOI PMC
Ross SH, Cantrell DA. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol. 2018;36:411–433. doi: 10.1146/annurev-immunol-042617-053352. PubMed DOI PMC
Schorle H, Holtschke T, Hünig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature. 1991;352:621–624. doi: 10.1038/352621a0. PubMed DOI
Letterio JJ, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB. Maternal Rescue of Transforming Growth Factor-β 1 Null Mice. Science. 1994;264:1936–1938. doi: 10.1126/science.8009224. PubMed DOI
Kanaan SB, Gammill HS, Harrington WE, De Rosa SC, Stevenson PA, Forsyth AM, Allen J, et al. Maternal microchimerism is prevalent in cord blood in memory T cells and other cell subsets, and persists post-transplant. Oncoimmunology. 2017;6:e1311436. doi: 10.1080/2162402X.2017.1311436. PubMed DOI PMC
Kanold AMJ, Westgren M, Götherström C. Cellular Subsets of Maternal Microchimerism in Umbilical Cord Blood. Cell Transplant. 2019;28:522–528. doi: 10.1177/0963689718779783. PubMed DOI PMC
Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I. Three pathways to mature macrophages in the early mouse yolk sac. Blood. 2005;106:3004–3011. doi: 10.1182/blood-2005-02-0461. PubMed DOI
Balounová J, Šplíchalová I, Dobešová M, Kolář M, Fišer K, Procházka J, Sedlacek R, et al. Toll-like receptor 2 expression on c-kit+ cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nat Commun. 2019;10:5176. doi: 10.1038/s41467-019-13150-0. PubMed DOI PMC
Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017;22:11. doi: 10.1186/s11658-017-0042-4. PubMed DOI PMC
Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41:225–239. doi: 10.1016/j.it.2020.01.005. PubMed DOI
Boes M, Cerny J, Massol R, den Brouw MO, Kirchhausen T, Chen J, Ploegh HL. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature. 2002;418:983–988. doi: 10.1038/nature01004. PubMed DOI
Pačes J, Knížková K, Tušková L, Grobárová V, Zadražil Z, Boes M, Černý J. MHC II - EGFP knock-in mouse model is a suitable tool for systems and quantitative immunology. Immunol Lett. 2022;251–252:75–85. doi: 10.1016/j.imlet.2022.10.007. PubMed DOI
Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605. doi: 10.1002/dvg.20335. PubMed DOI
Crago SS, Prince SJ, Pretlow TG, McGhee JR, Mestecky J. Human colostral cells. I. Separation and characterization. Clin Exp Immunol. 1979;38:585–597. PubMed PMC
Babu ST, Niu X, Raetz M, Savani RC, Hooper LV, Mirpuri J. Maternal high-fat diet results in microbiota-dependent expansion of ILC3s in mice offspring. JCI Insight. 2018;3:e99223. doi: 10.1172/jci.insight.99223. PubMed DOI PMC
Hassiotou F, Hepworth AR, Metzger P, Lai CT, Trengove N, Hartmann PE, Filgueira L. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immunol. 2013;2:e3. doi: 10.1038/cti.2013.1. PubMed DOI PMC
Molès JP, Tuaillon E, Kankasa C, Bedin A-S, Nagot N, Marchant A, McDermid JM, Van de Perre P. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr Allergy Immunol. 2018;29:133–143. doi: 10.1111/pai.12841. PubMed DOI
Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. 2014;10:1171–1184. doi: 10.1586/1744666X.2014.942288. PubMed DOI PMC
Hassiotou F, Geddes DT, Hartmann PE. Cells in Human Milk: State of the Science. J Hum Lact. 2013;29:171–182. doi: 10.1177/0890334413477242. PubMed DOI
Valverde-Villegas JM, Durand M, Bedin A-S, Rutagwera D, Kankasa C, Tuaillon E, Nagot N, et al. Large Stem/Progenitor-Like Cell Subsets can Also be Identified in the CD45 - and CD45 +/High Populations in Early Human Milk. J Hum Lact. 2020;36:303–309. doi: 10.1177/0890334419885315. PubMed DOI
Sabbaj S, Ghosh MK, Edwards BH, Leeth R, Don Decker W, Goepfert PA, Aldrovandi GM. Breast Milk-Derived Antigen-Specific CD8+ T Cells: An Extralymphoid Effector Memory Cell Population in Humans. J Immunol. 2005;174:2951–2956. doi: 10.4049/jimmunol.174.5.2951. PubMed DOI
Tuaillon E, Valéa D, Becquart P, Al Tabaa Y, Meda N, Bollore K, Van de Perre P, Vendrell J-P. Human milk-derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol. 2009;182:7155–7162. doi: 10.4049/jimmunol.0803107. PubMed DOI
Pačes J, Grobárová V, Zadražil Z, Knížková K, Malinská N, Tušková L, Boes M, Černý J. MHC II-EGFP Knock-in Mouse Model. Curr Protoc. 2023;3:e925. doi: 10.1002/cpz1.925. PubMed DOI
Ikebuchi R, Fujimoto M, Moriya T, Kusumoto Y, Kobayashi K, Tomura M. T cells are the main population in mouse breast milk and express similar profiles of tight junction proteins as those in mammary alveolar epithelial cells. J Reprod Immunol. 2020;140:103137. doi: 10.1016/j.jri.2020.103137. PubMed DOI
Wirt DP, Adkins LT, Palkowetz KH, Schmalstieg FC, Goldman AS. Activated and memory T lymphocytes in human milk. Cytometry. 1992;13:282–290. doi: 10.1002/cyto.990130310. PubMed DOI
Pillay J, Den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM, Tesselaar K, Koenderman L. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116:625–627. doi: 10.1182/blood-2010-01-259028. PubMed DOI
Yu JC, Khodadadi H, Malik A, Davidson B, da Silva Lopes Salles É, Bhatia J, Hale VL, Baban B. Innate Immunity of Neonates and Infants. Front Immunol. 2018;9:1759. doi: 10.3389/fimmu.2018.01759. PubMed DOI PMC
Weinberger B, Laskin DL, Mariano TM, Sunil VR, DeCoste CJ, Heck DE, Gardner CR, Laskin JD. Mechanisms underlying reduced responsiveness of neonatal neutrophils to distinct chemoattractants. J Leukoc Biol. 2001;70:969–976. doi: 10.1189/jlb.70.6.969. PubMed DOI PMC
Yost CC, Cody MJ, Harris ES, Thornton NL, McInturff AM, Martinez ML, Chandler NB, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113:6419–6427. doi: 10.1182/blood-2008-07-171629. PubMed DOI PMC
Hughes A, Brock JH, Parrott DM, Cockburn F. The interaction of infant formula with macrophages: effect on phagocytic activity, relationship to expression of class II MHC antigen and survival of orally administered macrophages in the neonatal gut. Immunology. 1988;64:213–218. PubMed PMC
Ichikawa M, Sugita M, Takahashi M, Satomi M, Takeshita T, Araki T, Takahashi H. Breast milk macrophages spontaneously produce granulocyte-macrophage colony-stimulating factor and differentiate into dendritic cells in the presence of exogenous interleukin-4 alone. Immunology. 2003;108:189–195. doi: 10.1046/j.1365-2567.2003.01572.x. PubMed DOI PMC
Geissmann F, Jung S, Littman DR. Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties. Immunity. 2003;19:71–82. doi: 10.1016/S1074-7613(03)00174-2. PubMed DOI
Zheng Y, Corrêa-Silva S, de Souza EC, Rodrigues RM, da Fonseca FAM, Gilio AE, Carneiro-Sampaio M, Palmeira P. Macrophage profile and homing into breast milk in response to ongoing respiratory infections in the nursing infant. Cytokine. 2020;129:155045. doi: 10.1016/j.cyto.2020.155045. PubMed DOI
Medzhitov R, Schneider DS, Soares MP. Disease Tolerance as a Defense Strategy. Science. 2012;335:936–941. doi: 10.1126/science.1214935. PubMed DOI PMC
Leyva-Cobián F, Clemente J. Phenotypic characterization and functional activity of human milk macrophages. Immunol Lett. 1984;8:249–256. doi: 10.1016/0165-2478(84)90004-X. PubMed DOI
Geijtenbeek TBH, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, et al. DC-SIGN, a Dendritic Cell-Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell. 2000;100:587–597. doi: 10.1016/S0092-8674(00)80694-7. PubMed DOI
Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109–1118. doi: 10.1084/jem.179.4.1109. PubMed DOI PMC
Bedin A, Molès J, Rutagwera D, Nagot N, Kankasa C, Tylleskär T, Valverde-Villegas JM, et al. MAIT cells, TCR γδ+ cells and ILCs cells in human breast milk and blood from HIV infected and uninfected women. Pediatr Allergy Immunol. 2019;30:479–487. doi: 10.1111/pai.13037. PubMed DOI
Cérbulo-Vázquez A, Hernández-Peláez G, Arriaga-Pizano LA, Bautista-Pérez P, Romero-Venado J, Flores-González JC, Figueroa-Damian R, et al. Characterization of CD127 − CD25 ++ Treg from human colostrum. Am J Reprod Immunol. 2018;79:e12806. doi: 10.1111/aji.12806. PubMed DOI
Rudloff HE, Schmalstieg FC, Mushtaha AA, Palkowetz KH, Liu SK, Goldman AS. Tumor Necrosis Factor-α in Human Milk. Pediatr Res. 1992;31:29–33. doi: 10.1203/00006450-199201000-00005. PubMed DOI
Hawkes JS, Bryan DL, James MJ, Gibson RA. Cytokines (IL-1β, IL-6, TNF-α, TGF-β1, and TGF-β2) and Prostaglandin E2 in Human Milk during the First Three Months Postpartum. Pediatr Res. 1999;46:194–199. doi: 10.1203/00006450-199908000-00012. PubMed DOI
Hackett RJ, Davis LS, Lipsky PE. Comparative effects of tumor necrosis factor-alpha and IL-1 beta on mitogen-induced T cell activation. J Immunol. 1988;140:2639–2644. doi: 10.4049/jimmunol.140.8.2639. PubMed DOI
Sabbaj S, Edwards BH, Ghosh MK, Semrau K, Cheelo S, Thea DM, Kuhn L, et al. Human Immunodeficiency Virus-Specific CD8(+) T Cells in Human Breast Milk. J Virol. 2002;76:7365–7373. doi: 10.1128/JVI.76.15.7365-7373.2002. PubMed DOI PMC
Tatematsu M, Takahashi M, Tsuda H, Hirose M, Furihata C, Sugimura T. Precocious differentiation of immature chief cells in fundic mucosa of infant rats induced by hydrocortisone. Cell Differ. 1975;4:285–294. doi: 10.1016/0045-6039(75)90013-5. PubMed DOI
Ma LJ, Walter B, DeGuzman A, Muller HK, Walker AM. Trans-Epithelial Immune Cell Transfer during Suckling Modulates Delayed-Type Hypersensitivity in Recipients as a Function of Gender. PLoS One. 2008;3:e3562. doi: 10.1371/journal.pone.0003562. PubMed DOI PMC
Tuboly S, Bernáth S. Intestinal Absorption of Colostral Lymphoid Cells in Newborn Animals. Adv Exp Med Biol. 2002;503:107–114. doi: 10.1007/978-1-4615-0559-4_12. PubMed DOI
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci. 2021;22:6729. doi: 10.3390/ijms22136729. PubMed DOI PMC
Catassi C, Bonucci A, Coppa GV, Carlucci A, Giorgi PL. Intestinal Permeability. Changes during the First Month: Effect of Natural versus Artificial Feeding. J Pediatr Gastroenterol Nutr. 1995;21:383–386. doi: 10.1002/j.1536-4801.1995.tb11955.x. PubMed DOI
Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med. 1977;146:1311–1322. doi: 10.1084/jem.146.5.1311. PubMed DOI PMC
Rose ML, Parrott DM, Bruce RG. The accumulation of immunoblasts in extravascular tissues including mammary gland, peritoneal cavity, gut and skin. Immunology. 1978;35:415–423. PubMed PMC
Ramanan D, Sefik E, Galván-Peña S, Wu M, Yang L, Yang Z, Kostic A, et al. An Immunologic Mode of Multigenerational Transmission Governs a Gut Treg Setpoint. Cell. 2020;181:1276–1290.e13. doi: 10.1016/j.cell.2020.04.030. PubMed DOI PMC
Ghosh MK, Nguyen V, Muller HK, Walker AM. Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus. J Immunol. 2016;197:2290–2296. doi: 10.4049/jimmunol.1502483. PubMed DOI PMC
Tanneau GM, Oyant LHS, Chevaleyre CC, Salmon HP. Differential Recruitment of T- and IgA B-lymphocytes in the Developing Mammary Gland in Relation to Homing Receptors and Vascular Addressins. J Histochem Cytochem. 1999;47:1581–1592. doi: 10.1177/002215549904701210. PubMed DOI
Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol. 2022;13:849012. doi: 10.3389/fimmu.2022.849012. PubMed DOI PMC
Li S, Zhang L, Zhou Q, Jiang S, Yang Y, Cao Y. Characterization of Stem Cells and Immune Cells in Preterm and Term Mother's Milk. J Hum Lact. 2019;35:528–534. doi: 10.1177/0890334419838986. PubMed DOI
Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JKY. Unravelling the Mystery of Stem/Progenitor Cells in Human Breast Milk. PLoS One. 2010;5:e14421. doi: 10.1371/journal.pone.0014421. PubMed DOI PMC
Handgretinger R, Kuçi S. CD133-Positive Hematopoietic Stem Cells: From Biology to Medicine. Adv Exp Med Biol. 2013;777:99–111. doi: 10.1007/978-1-4614-5894-4_7. PubMed DOI
Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger A-J, Metzger P, Trengove N, et al. Breastmilk Is a Novel Source of Stem Cells with Multilineage Differentiation Potential. Stem Cells. 2012;30:2164–2174. doi: 10.1002/stem.1188. PubMed DOI PMC
Chappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol. 2010;22:552–559. doi: 10.1016/j.coi.2010.08.005. PubMed DOI PMC
Chappert P, Leboeuf M, Rameau P, Lalfer M, Desbois S, Liblau RS, Danos O, et al. Antigen-specific Treg impair CD8 + T-cell priming by blocking early T-cell expansion. Eur J Immunol. 2010;40:339–350. doi: 10.1002/eji.200839107. PubMed DOI
Carter AM. Animal models of human pregnancy and placentation: alternatives to the mouse. Reproduction. 2020;160:R129–R143. doi: 10.1530/REP-20-0354. PubMed DOI