Dynamics of compartment-specific proteomic landscapes of hepatotoxic and cholestatic models of liver fibrosis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-02699S
Grantová Agentura České Republiky
21-21736S
Grantová Agentura České Republiky
NU21-04-00100
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 68378050
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5102
NextGenerationEU
273723
Grantová Agentura, Univerzita Karlova
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1604 NPU II
Ministerstvo Školství, Mládeže a Tělovýchovy
LO1419
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015040
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40197391
PubMed Central
PMC11978302
DOI
10.7554/elife.98023
PII: 98023
Knihovny.cz E-zdroje
- Klíčová slova
- atomic force microscopy, clusterin, collagen deposits, human, mass spectrometry, matrisome, medicine, mouse,
- MeSH
- chlorid uhličitý toxicita MeSH
- cholestáza * metabolismus chemicky indukované patologie MeSH
- extracelulární matrix metabolismus MeSH
- jaterní cirhóza * metabolismus patologie chemicky indukované MeSH
- játra * patologie metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- proteom * metabolismus analýza MeSH
- proteomika MeSH
- pyridiny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3,5-diethoxycarbonyl-1,4-dihydrocollidine MeSH Prohlížeč
- chlorid uhličitý MeSH
- proteom * MeSH
- pyridiny MeSH
Accumulation of extracellular matrix (ECM) in liver fibrosis is associated with changes in protein abundance and composition depending upon etiology of the underlying liver disease. Current efforts to unravel etiology-specific mechanisms and pharmacological targets rely on several models of experimental fibrosis. Here, we characterize and compare dynamics of hepatic proteome remodeling during fibrosis development and spontaneous healing in experimental mouse models of hepatotoxic (carbon tetrachloride [CCl4] intoxication) and cholestatic (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] feeding) injury. Using detergent-based tissue extraction and mass spectrometry, we identified compartment-specific changes in the liver proteome with detailed attention to ECM composition and changes in protein solubility. Our analysis revealed distinct time-resolved CCl4 and DDC signatures, with identified signaling pathways suggesting limited healing and a potential for carcinogenesis associated with cholestasis. Correlation of protein abundance profiles with fibrous deposits revealed extracellular chaperone clusterin with implicated role in fibrosis resolution. Dynamics of clusterin expression was validated in the context of human liver fibrosis. Atomic force microscopy of fibrotic livers complemented proteomics with profiles of disease-associated changes in local liver tissue mechanics. This study determined compartment-specific proteomic landscapes of liver fibrosis and delineated etiology-specific ECM components, providing thus a foundation for future antifibrotic therapies.
Alcoholism or chronic conditions like hepatitis damage the liver. Over time, scar tissue builds up in the liver, causing cirrhosis. The scaring results from the liver’s repeated attempts to repair itself by creating more structural proteins called extracellular matrix proteins. A buildup of these scaffolding proteins leads to tissue stiffening or fibrosis. Fibrosis may heal in some cases but in others, it may progress to cirrhosis, liver cancer or liver failure. Learning more about these processes may help scientists and clinicians understand why fibrosis is reversible in some cases but not others. It may also allow them to develop treatments that can treat or reverse fibrosis and prevent cirrhosis, liver cancer, or liver failure. The first step is studying how fibrosis occurs in mouse models that mimic different types of liver disease. For example, repetitive ingestion of a toxic substance, such as alcohol, can cause one type of liver disease. However, slowing or stalling bile flow through the biliary system (the liver, gallbladder, and bile ducts), leads to a different type of chronic liver injury. Jirouskova et al. identify an extracellular protein called clusterin that may help heal fibrosis. The experiments used mouse models of two different types of liver disease. One mimicked liver disease caused by repetitive toxin injury, and the other modelled liver disease caused by chronic stalling of the bile flow in the liver (cholestasis). In the experiments, Jirouskova et al. looked at all the proteins made in each type of liver disease as the animals developed fibrosis or their fibrosis resolved. They also studied extracellular matrix proteins and how they affected molecular signaling in the liver tissue. The experiments revealed different patterns of protein production and healing in the different types of liver disease. The animals with liver diseases caused by chronic cholestatic injury were less likely to heal their livers and showed potential to progress to liver cancer. Production of the clusterin protein was connected with better liver recovery from toxic injuries. Jirouskova et al. provide a comprehensive map of all the proteins produced over the course of liver fibrosis progression and healing in two different animal models of liver disease. Scientists and clinicians may use this information to study liver disease types. It may also one day help them personalize patient's therapies. The experiments show that extracellular matrix proteins are essential contributors to fibrosis and key signaling agents in liver disease. This may make them good targets for new therapies. Boosting clusterin production may be one approach to promoting liver recovery. More studies are needed to confirm this before such therapies can be developed and tested in humans.
Department of Animal Physiology Faculty of Science Charles University Prague Czech Republic
Laboratory of Mass Spectrometry BIOCEV Faculty of Science Charles University Prague Czech Republic
doi: 10.1101/2024.03.26.586230 PubMed
Před aktualizacídoi: 10.7554/eLife.98023.1 PubMed
Před aktualizacídoi: 10.7554/eLife.98023.2 PubMed
Zobrazit více v PubMed
Acun A, Oganesyan R, Uygun K, Yeh H, Yarmush ML, Uygun BE. Liver donor age affects hepatocyte function through age-dependent changes in decellularized liver matrix. Biomaterials. 2021;270:120689. doi: 10.1016/j.biomaterials.2021.120689. PubMed DOI PMC
Aigelsreiter A, Janig E, Sostaric J, Pichler M, Unterthor D, Halasz J, Lackner C, Zatloukal K, Denk H. Clusterin expression in cholestasis, hepatocellular carcinoma and liver fibrosis. Histopathology. 2009;54:561–570. doi: 10.1111/j.1365-2559.2009.03258.x. PubMed DOI
An SY, Jang YJ, Lim HJ, Han J, Lee J, Lee G, Park JY, Park SY, Kim JH, Do BR, Han C, Park HK, Kim OH, Song MJ, Kim SJ, Kim JH. Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology. 2017;152:1174–1186. doi: 10.1053/j.gastro.2016.12.003. PubMed DOI
Azimifar SB, Nagaraj N, Cox J, Mann M. Cell-type-resolved quantitative proteomics of murine liver. Cell Metabolism. 2014;20:1076–1087. doi: 10.1016/j.cmet.2014.11.002. PubMed DOI
Barnes SL, Lyshchik A, Washington MK, Gore JC, Miga MI. Development of a mechanical testing assay for fibrotic murine liver. Medical Physics. 2007;34:4439–4450. doi: 10.1118/1.2795665. PubMed DOI PMC
Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D, Lifshitz A, Kolodziejczyk AA, Bahar Halpern K, Elinav E, Itzkovitz S. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell. 2022;29:973–989. doi: 10.1016/j.stem.2022.04.008. PubMed DOI
Cejnar P, Smirnova TA, Kuckova S, Prochazka A, Zak I, Harant K, Zakharov S. Acute and chronic blood serum proteome changes in patients with methanol poisoning. Scientific Reports. 2022;12:21379. doi: 10.1038/s41598-022-25492-9. PubMed DOI PMC
Couvelard A, Scoazec JY, Feldmann G. Expression of cell-cell and cell-matrix adhesion proteins by sinusoidal endothelial cells in the normal and cirrhotic human liver. The American Journal of Pathology. 1993;143:738–752. PubMed PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Didiasova M, Schaefer L, Wygrecka M. When place matters: shuttling of enolase-1 across cellular compartments. Frontiers in Cell and Developmental Biology. 2019;7:61. doi: 10.3389/fcell.2019.00061. PubMed DOI PMC
Elias JE, Gygi SP. Target-decoy search strategy for mass spectrometry-based proteomics. Methods in Molecular Biology. 2010;604:55–71. doi: 10.1007/978-1-60761-444-9_5. PubMed DOI PMC
Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes & Development. 2014;28:943–958. doi: 10.1101/gad.239327.114. PubMed DOI PMC
Fan W, Liu T, Chen W, Hammad S, Longerich T, Hausser I, Fu Y, Li N, He Y, Liu C, Zhang Y, Lian Q, Zhao X, Yan C, Li L, Yi C, Ling Z, Ma L, Zhao X, Xu H, Wang P, Cong M, You H, Liu Z, Wang Y, Chen J, Li D, Hui L, Dooley S, Hou J, Jia J, Sun B. ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice. Gastroenterology. 2019;157:1352–1367. doi: 10.1053/j.gastro.2019.07.036. PubMed DOI
Fickert P, Stöger U, Fuchsbichler A, Moustafa T, Marschall H-U, Weiglein AH, Tsybrovskyy O, Jaeschke H, Zatloukal K, Denk H, Trauner M. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. The American Journal of Pathology. 2007;171:525–536. doi: 10.2353/ajpath.2007.061133. PubMed DOI PMC
Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua W-J, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome Consortium Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunology. 2012;13:1118–1128. doi: 10.1038/ni.2419. PubMed DOI PMC
Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, Mick R, Janmey PA, Furth EE, Wells RG. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2007;293:G1147–G1154. doi: 10.1152/ajpgi.00032.2007. PubMed DOI
Ghallab A, Myllys M, Holland CH, Zaza A, Murad W, Hassan R, Ahmed YA, Abbas T, Abdelrahim EA, Schneider KM, Matz-Soja M, Reinders J, Gebhardt R, Berres M-L, Hatting M, Drasdo D, Saez-Rodriguez J, Trautwein C, Hengstler JG. Influence of liver fibrosis on lobular zonation. Cells. 2019;8:1556. doi: 10.3390/cells8121556. PubMed DOI PMC
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. The one hour yeast proteome. Molecular & Cellular Proteomics. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020;587:555–566. doi: 10.1038/s41586-020-2938-9. PubMed DOI PMC
Hermanowicz P, Sarna M, Burda K, Gabryś H. AtomicJ: an open source software for analysis of force curves. The Review of Scientific Instruments. 2014;85:063703. doi: 10.1063/1.4881683. PubMed DOI
Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nature Protocols. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Hynek R, Michalus I, Cejnar P, Šantrůček J, Seidlová S, Kučková Š, Sázelová P, Kašička V. In-bone protein digestion followed by LC-MS/MS peptide analysis as a new way towards the routine proteomic characterization of human maxillary and mandibular bone tissue in oral surgery. Electrophoresis. 2021;42:2552–2562. doi: 10.1002/elps.202100211. PubMed DOI
Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–1219. doi: 10.1126/science.1176009. PubMed DOI PMC
Jin G, Howe PH. Transforming growth factor beta regulates clusterin gene expression via modulation of transcription factor c-Fos. European Journal of Biochemistry. 1999;263:534–542. doi: 10.1046/j.1432-1327.1999.00533.x. PubMed DOI
Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, Regev A, Koller D, Immunological Genome Project Consortium. Best AJ, Knell J, Goldrath A, Joic V, Koller D, Shay T, Regev A, Cohen N, Brennan P, Brenner M, Kim F, Rao TN, Wagers A, Heng T, Ericson J, Rothamel K, Ortiz-Lopez A, Mathis D, Benoist C, Bezman NA, Sun JC, Min-Oo G, Kim CC, Lanier LL, Miller J, Brown B, Merad M, Gautier EL, Jakubzick C, Randolph GJ, Monach P, Blair DA, Dustin ML, Shinton SA, Hardy RR, Laidlaw D, Collins J, Gazit R, Rossi DJ, Malhotra N, Sylvia K, Kang J, Kreslavsky T, Fletcher A, Elpek K, Bellemarte-Pelletier A, Malhotra D, Turley S. Identification of transcriptional regulators in the mouse immune system. Nature Immunology. 2013;14:633–643. doi: 10.1038/ni.2587. PubMed DOI PMC
Joshi N, Kopec AK, Ray JL, Cline-Fedewa H, Nawabi A, Schmitt T, Nault R, Zacharewski TR, Rockwell CE, Flick MJ, Luyendyk JP. Fibrin deposition following bile duct injury limits fibrosis through an αMβ2-dependent mechanism. Blood. 2016;127:2751–2762. doi: 10.1182/blood-2015-09-670703. PubMed DOI PMC
Karlsen TH, Sheron N, Zelber-Sagi S, Carrieri P, Dusheiko G, Bugianesi E, Pryke R, Hutchinson SJ, Sangro B, Martin NK, Cecchini M, Dirac MA, Belloni A, Serra-Burriel M, Ponsioen CY, Sheena B, Lerouge A, Devaux M, Scott N, Hellard M, Verkade HJ, Sturm E, Marchesini G, Yki-Järvinen H, Byrne CD, Targher G, Tur-Sinai A, Barrett D, Ninburg M, Reic T, Taylor A, Rhodes T, Treloar C, Petersen C, Schramm C, Flisiak R, Simonova MY, Pares A, Johnson P, Cucchetti A, Graupera I, Lionis C, Pose E, Fabrellas N, Ma AT, Mendive JM, Mazzaferro V, Rutter H, Cortez-Pinto H, Kelly D, Burton R, Lazarus JV, Ginès P, Buti M, Newsome PN, Burra P, Manns MP. The EASL-lancet liver commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet. 2022;399:61–116. doi: 10.1016/S0140-6736(21)01701-3. PubMed DOI
Kendall TJ, Dolman GE, Duff CM, Paish EC, Zaitoun A, Irving W, Fallowfield JA, Guha IN. Hepatic elastin content is predictive of adverse outcome in advanced fibrotic liver disease. Histopathology. 2018;73:90–100. doi: 10.1111/his.13499. PubMed DOI PMC
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews. Gastroenterology & Hepatology. 2021;18:151–166. doi: 10.1038/s41575-020-00372-7. PubMed DOI
Klaas M, Kangur T, Viil J, Mäemets-Allas K, Minajeva A, Vadi K, Antsov M, Lapidus N, Järvekülg M, Jaks V. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Scientific Reports. 2016;6:27398. doi: 10.1038/srep27398. PubMed DOI PMC
Kömüves LG, Feren A, Jones AL, Fodor E. Expression of epidermal growth factor and its receptor in cirrhotic liver disease. The Journal of Histochemistry and Cytochemistry. 2000;48:821–830. doi: 10.1177/002215540004800610. PubMed DOI
Krämer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in Ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Lai KKY, Shang S, Lohia N, Booth GC, Masse DJ, Fausto N, Campbell JS, Beretta L. Extracellular matrix dynamics in hepatocarcinogenesis: a comparative proteomics study of PDGFC transgenic and Pten null mouse models. PLOS Genetics. 2011;7:e1002147. doi: 10.1371/journal.pgen.1002147. PubMed DOI PMC
Liu Y, Meyer C, Xu C, Weng H, Hellerbrand C, ten Dijke P, Dooley S. Animal models of chronic liver diseases. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2013;304:G449–G468. doi: 10.1152/ajpgi.00199.2012. PubMed DOI
Mak KM, Chen LL, Lee TF. Codistribution of collagen type IV and laminin in liver fibrosis of elderly cadavers: immunohistochemical marker of perisinusoidal basement membrane formation. The Anatomical Record. 2013;296:953–964. doi: 10.1002/ar.22694. PubMed DOI
Manco R, Clerbaux L-A, Verhulst S, Bou Nader M, Sempoux C, Ambroise J, Bearzatto B, Gala JL, Horsmans Y, van Grunsven L, Desdouets C, Leclercq I. Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. Journal of Hepatology. 2019;70:1180–1191. doi: 10.1016/j.jhep.2019.02.003. PubMed DOI
Massey VL, Dolin CE, Poole LG, Hudson SV, Siow DL, Brock GN, Merchant ML, Wilkey DW, Arteel GE. The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology. 2017;65:969–982. doi: 10.1002/hep.28918. PubMed DOI PMC
Mazza G, Telese A, Al-Akkad W, Frenguelli L, Levi A, Marrali M, Longato L, Thanapirom K, Vilia MG, Lombardi B, Crowley C, Crawford M, Karsdal MA, Leeming DJ, Marrone G, Bottcher K, Robinson B, Del Rio Hernandez A, Tamburrino D, Spoletini G, Malago M, Hall AR, Godovac-Zimmermann J, Luong TV, De Coppi P, Pinzani M, Rombouts K. Cirrhotic human liver extracellular matrix 3D scaffolds promote smad-dependent TGF-β1 epithelial mesenchymal transition. Cells. 2019;9:83. doi: 10.3390/cells9010083. PubMed DOI PMC
Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome Consortium Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunology. 2012;13:888–899. doi: 10.1038/ni.2370. PubMed DOI PMC
Miyamoto-Sato E, Fujimori S, Ishizaka M, Hirai N, Masuoka K, Saito R, Ozawa Y, Hino K, Washio T, Tomita M, Yamashita T, Oshikubo T, Akasaka H, Sugiyama J, Matsumoto Y, Yanagawa H. A comprehensive resource of interacting protein regions for refining human transcription factor networks. PLOS ONE. 2010;5:e9289. doi: 10.1371/journal.pone.0009289. PubMed DOI PMC
Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & Cellular Proteomics. 2012;11:M111. doi: 10.1074/mcp.M111.014647. PubMed DOI PMC
Nejjari M, Couvelard A, Mosnier JF, Moreau A, Feldmann G, Degott C, Marcellin P, Scoazec JY. Integrin up-regulation in chronic liver disease: relationship with inflammation and fibrosis in chronic hepatitis C. The Journal of Pathology. 2001;195:473–481. doi: 10.1002/path.964. PubMed DOI
Nishio T, Hu R, Koyama Y, Liang S, Rosenthal SB, Yamamoto G, Karin D, Baglieri J, Ma H-Y, Xu J, Liu X, Dhar D, Iwaisako K, Taura K, Brenner DA, Kisseleva T. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. Journal of Hepatology. 2019;71:573–585. doi: 10.1016/j.jhep.2019.04.012. PubMed DOI
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Molecular Systems Biology. 2022;18:e10947. doi: 10.15252/msb.202210947. PubMed DOI PMC
Ojha S, Pribyl J, Klimovic S, Hadraba D, Jirouskova M, Gregor M. Measurement of liver stiffness using atomic force microscopy coupled with polarization microscopy. Journal of Visualized Experiments. 2022;01:e974. doi: 10.3791/63974. PubMed DOI
Olsen AL, Bloomer SA, Chan EP, Gaça MDA, Georges PC, Sackey B, Uemura M, Janmey PA, Wells RG. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2011;301:G110–G118. doi: 10.1152/ajpgi.00412.2010. PubMed DOI PMC
Olsen AL, Sackey BK, Marcinkiewicz C, Boettiger D, Wells RG. Fibronectin extra domain-A promotes hepatic stellate cell motility but not differentiation into myofibroblasts. Gastroenterology. 2012;142:928–937. doi: 10.1053/j.gastro.2011.12.038. PubMed DOI PMC
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaíno JA. The PRIDE database at 20 years: 2025 update. Nucleic Acids Research. 2025;53:D543–D553. doi: 10.1093/nar/gkae1011. PubMed DOI PMC
Popov Y, Patsenker E, Stickel F, Zaks J, Bhaskar KR, Niedobitek G, Kolb A, Friess H, Schuppan D. Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. Journal of Hepatology. 2008;48:453–464. doi: 10.1016/j.jhep.2007.11.021. PubMed DOI
Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, Portman JR, Matchett KP, Brice M, Marwick JA, Taylor RS, Efremova M, Vento-Tormo R, Carragher NO, Kendall TJ, Fallowfield JA, Harrison EM, Mole DJ, Wigmore SJ, Newsome PN, Weston CJ, Iredale JP, Tacke F, Pollard JW, Ponting CP, Marioni JC, Teichmann SA, Henderson NC. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–518. doi: 10.1038/s41586-019-1631-3. PubMed DOI PMC
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, Sheppard D. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Science Translational Medicine. 2015;7:288ra79. doi: 10.1126/scitranslmed.aaa5094. PubMed DOI PMC
Saneyasu T, Akhtar R, Sakai T. Molecular cues guiding matrix stiffness in liver fibrosis. BioMed Research International. 2016;2016:2646212. doi: 10.1155/2016/2646212. PubMed DOI PMC
Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Molecular Systems Biology. 2015;11:819. doi: 10.15252/msb.20156123. PubMed DOI PMC
Schuppan D, Cramer T, Bauer M, Strefeld T, Hahn EG, Herbst H. Hepatocytes as a source of collagen type XVIII endostatin. Lancet. 1998;352:879–880. doi: 10.1016/S0140-6736(05)60006-2. PubMed DOI
Seo H-Y, Lee S-H, Lee J-H, Kang YN, Choi Y-K, Hwang JS, Park K-G, Jang BK, Kim M-K. Clusterin attenuates hepatic fibrosis by inhibiting hepatic stellate cell activation and downregulating the smad3 signaling pathway. Cells. 2019;8:1442. doi: 10.3390/cells8111442. PubMed DOI PMC
Shao X, Taha IN, Clauser KR, Gao YT, Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Research. 2020;48:D1136–D1144. doi: 10.1093/nar/gkz849. PubMed DOI PMC
Shim Y-J, Kang B-H, Jeon H-S, Park I-S, Lee K-U, Lee I-K, Park G-H, Lee K-M, Schedin P, Min B-H. Clusterin induces matrix metalloproteinase-9 expression via ERK1/2 and PI3K/Akt/NF-κB pathways in monocytes/macrophages. Journal of Leukocyte Biology. 2011;90:761–769. doi: 10.1189/jlb.0311110. PubMed DOI
Sottile J, Shi F, Rublyevska I, Chiang H-Y, Lust J, Chandler J. Fibronectin-dependent collagen I deposition modulates the cell response to fibronectin. American Journal of Physiology. Cell Physiology. 2007;293:C1934–C1946. doi: 10.1152/ajpcell.00130.2007. PubMed DOI
Tang M, Zhao Y, Zhao J, Wei S, Liu M, Zheng N, Geng D, Han S, Zhang Y, Zhong G, Li S, Zhang X, Wang C, Yan H, Cao X, Li L, Bai X, Ji J, Feng X-H, Qin J, Liang T, Zhao B. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Science Advances. 2022;8:eabn5683. doi: 10.1126/sciadv.abn5683. PubMed DOI PMC
Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: Concept to treatment. Journal of Hepatology. 2015;62:S15–S24. doi: 10.1016/j.jhep.2015.02.039. PubMed DOI
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Williams LM, McCann FE, Cabrita MA, Layton T, Cribbs A, Knezevic B, Fang H, Knight J, Zhang M, Fischer R, Bonham S, Steenbeek LM, Yang N, Sood M, Bainbridge C, Warwick D, Harry L, Davidson D, Xie W, Sundstrӧm M, Feldmann M, Nanchahal J. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. PNAS. 2020;117:20753–20763. doi: 10.1073/pnas.2004281117. PubMed DOI PMC
Wilson MR, Zoubeidi A. Clusterin as a therapeutic target. Expert Opinion on Therapeutic Targets. 2017;21:201–213. doi: 10.1080/14728222.2017.1267142. PubMed DOI
Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, Chen J, Li C, Zeng R, Ge G. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death & Disease. 2021;12:163. doi: 10.1038/s41419-021-03443-y. PubMed DOI PMC
Yang L, Kwon J, Popov Y, Gajdos GB, Ordog T, Brekken RA, Mukhopadhyay D, Schuppan D, Bi Y, Simonetto D, Shah VH. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014;146:1339–1350. doi: 10.1053/j.gastro.2014.01.061. PubMed DOI PMC
Yang W, He H, Wang T, Su N, Zhang F, Jiang K, Zhu J, Zhang C, Niu K, Wang L, Yuan X, Liu N, Li L, Wei W, Hu J. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology. 2021;74:2774–2790. doi: 10.1002/hep.31987. PubMed DOI PMC
Yue H-Y, Yin C, Hou J-L, Zeng X, Chen Y-X, Zhong W, Hu P-F, Deng X, Tan Y-X, Zhang J-P, Ning B-F, Shi J, Zhang X, Wang H-Y, Lin Y, Xie W-F. Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut. 2010;59:236–246. doi: 10.1136/gut.2008.174904. PubMed DOI