Acute and chronic blood serum proteome changes in patients with methanol poisoning
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36494437
PubMed Central
PMC9734099
DOI
10.1038/s41598-022-25492-9
PII: 10.1038/s41598-022-25492-9
Knihovny.cz E-zdroje
- MeSH
- alkoholismus * MeSH
- hemokoagulace MeSH
- lidé MeSH
- methanol MeSH
- otrava * epidemiologie MeSH
- proteom MeSH
- sérum MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methanol MeSH
- proteom MeSH
Twenty-four blood serum samples from patients with acute methanol poisoning (M) from the mass methanol poisoning outbreak in the Czech Republic in 2012 were compared with 46 patient samples taken four years after poisoning (S) (overlap of 10 people with group M) and with a control group (C) of 24 samples of patients with a similar proportion of chronic alcohol abuse. When comparing any two groups, tens to hundreds of proteins with a significant change in concentration were identified. Fifteen proteins showed significant changes when compared between any two groups. The group with acute methanol poisoning showed significant changes in protein concentrations for at least 64 proteins compared to the other groups. Among the most important identified proteins closely related to intoxication are mainly those involved in blood coagulation, metabolism of vitamin A (increased retinol-binding protein), immune response (e.g., increased complement factor I, complement factors C3 and C5), and lipid transport (increased apolipoprotein A I, apolipoprotein A II, adiponectin). For blood coagulation, the most affected proteins with significant changes in the methanol poisoning group were von Willebrand factor, carboxypeptidase N, alpha-2-antiplasmin (all increased), inter-alpha-trypsin inhibitor heavy chain H4, kininogen-1, plasma serine protease inhibitor, plasminogen (all decreased). However, heparin administration used for the methanol poisoning group could have interfered with some of the changes in their concentrations. Data are available via ProteomeXchange with the identifier PXD035726.
Zobrazit více v PubMed
Sykora D, et al. Formaldehyde reacts with amino acids and peptides with a potential role in acute methanol intoxication. J. Anal. Toxicol. 2020;44:880–885. doi: 10.1093/jat/bkaa039. PubMed DOI
Blug M, Leker J, Plass L, Günther A, et al. In: Methanol: The Basic Chemical and Energy Feedstock of the Future. Bertau M, et al., editors. Springer; 2014.
Olah GA. Beyond oil and gas: The methanol Economy. Angew. Chem. 2005;44:2636–2639. doi: 10.1002/anie.200462121. PubMed DOI
Hovda KE, et al. Methanol outbreak in Norway 2002–2004: Epidemiology, clinical features and prognostic signs. J. Intern. Med. 2005;258:181–190. doi: 10.1111/j.1365-2796.2005.01521.x. PubMed DOI
Paasma R, Hovda KE, Tikkerberi A, Jacobsen D. Methanol mass poisoning in Estonia: Outbreak in 154 patients. Clin. Toxicol. 2007;45:152–157. doi: 10.1080/15563650600956329. PubMed DOI
Rulisek J, et al. Cost-effectiveness of hospital treatment and outcomes of acute methanol poisoning during the Czech Republic mass poisoning outbreak. J. Crit. Care. 2017;39:190–198. doi: 10.1016/j.jcrc.2017.03.001. PubMed DOI
Zakharov S, et al. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. Clin. Toxicol. 2014;52:1013–1024. doi: 10.3109/15563650.2014.974106. PubMed DOI
McMartin KE, Makar AB, Martin G, Palese M, Tephly TR. Methanol poisoning. I. The role of formic acid in the development of metabolic acidosis in the monkey and the reversal by 4-methylpyrazole. Biochem. Med. 1975;13:319–333. doi: 10.1016/0006-2944(75)90171-4. PubMed DOI
Kraut JA, Kurtz I. Toxic alcohol ingestions: Clinical features, diagnosis, and management. Clin. J. Am. Soc. Nephrol. 2008;3:208–225. doi: 10.2215/CJN.03220807. PubMed DOI
Kotikova K, et al. Efficiency of (123)I-ioflupane SPECT as the marker of basal ganglia damage in acute methanol poisoning: 6-year prospective study. Clin. Toxicol. (Phila) 2021;59:235–245. doi: 10.1080/15563650.2020.1802033. PubMed DOI
Vaneckova M, et al. Imaging findings after methanol intoxication (cohort of 46 patients) Neuroendocrinol. Lett. 2015;36:737–744. PubMed
Zakharov S, et al. Neuroinflammation markers and methyl alcohol induced toxic brain damage. Toxicol. Lett. 2018;298:60–69. doi: 10.1016/j.toxlet.2018.05.001. PubMed DOI
Ciceri P, Rabuffetti M, Monopoli A, Nicosia S. Production of leukotrienes in a model of focal cerebral ischaemia in the rat. Br. J. Pharmacol. 2001;133:1323–1329. doi: 10.1038/sj.bjp.0704189. PubMed DOI PMC
Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P. Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann. Neurol. 2000;47:54–63. doi: 10.1002/1531-8249(200001)47:1<54::Aid-Ana10>3.3.Co;2-P. PubMed DOI
Plog BA, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 2015;35:518–526. doi: 10.1523/Jneurosci.3742-14.2015. PubMed DOI PMC
Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J. Neurosci. 2018;38:2519–2532. doi: 10.1523/Jneurosci.2197-17.2018. PubMed DOI PMC
Hammad A, Westacott L, Zaben M. The role of the complement system in traumatic brain injury: A review. J. Neuroinflamm. 2018 doi: 10.1186/s12974-018-1066-z. PubMed DOI PMC
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni MG. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front. Cell. Neurosci. 2014 doi: 10.3389/fncel.2014.00380. PubMed DOI PMC
Nurieva O, Kotikova K. Severe methanol poisoning with supralethal serum formate concentration: A case report. Med. Princ. Pract. 2015;24:581–583. doi: 10.1159/000439350. PubMed DOI PMC
Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004;23:53–89. doi: 10.1016/j.preteyeres.2003.10.003. PubMed DOI
Liberski S, Kaluzny BJ, Kociecki J. Methanol-induced optic neuropathy: A still-present problem. Arch. Toxicol. 2022;96:431–451. doi: 10.1007/s00204-021-03202-0. PubMed DOI PMC
Hlusicka J, et al. Role of activation of lipid peroxidation in the mechanisms of acute methanol poisoning(.) Clin. Toxicol. (Phila) 2018;56:893–903. doi: 10.1080/15563650.2018.1455980. PubMed DOI
Chen JM, Zhu GY, Xia WT, Zhao ZQ. Proteomic analysis of rat retina after methanol intoxication. Toxicology. 2012;293:89–96. doi: 10.1016/j.tox.2012.01.002. PubMed DOI
Sejvl J, et al. Public health response to methanol mass poisoning in the Czech Republic in 2012: A case study. Cent. Eur. J. Publ. Health. 2019;27:S29–S39. doi: 10.21101/cejph.a5764. PubMed DOI
Zakharov S, et al. Acute methanol poisoning: Prevalence and predisposing factors of haemorrhagic and non-haemorrhagic brain lesions. Basic Clin. Pharmacol. 2016;119:228–238. doi: 10.1111/bcpt.12559. PubMed DOI
Nurieva O, et al. Progressive chronic retinal axonal loss following acute methanol-induced optic neuropathy: Four-year prospective cohort study. Am. J. Ophthalmol. 2018;191:100–115. doi: 10.1016/j.ajo.2018.04.015. PubMed DOI
Pelclova D, et al. Can proteomics predict the prognosis in chronic dioxin intoxication? Mon. Chem. 2019;150:1715–1722. doi: 10.1007/s00706-019-02460-0. DOI
Tan LB, Chen KT, Tyan YC, Liao PC, Gu HR. Proteomic analysis for human urinary proteins associated with arsenic intoxication. Proteom. Clin. Appl. 2008;2:1087–1098. doi: 10.1002/prca.200800021. PubMed DOI
Zakharov S, et al. The impact of co-morbidities on a 6-year survival after methanol mass poisoning outbreak: Possible role of metabolic formaldehyde. Clin. Toxicol. 2020;58:241–253. doi: 10.1080/15563650.2019.1637525. PubMed DOI
Zakharov S, et al. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak. Clin. Toxicol. 2015;53:797–806. doi: 10.3109/15563650.2015.1059946. PubMed DOI
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Hebert AS, et al. The one hour yeast proteome. Mol. Cell Proteomics. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucl. Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Elias JE, Gygi SR. Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol. Biol. 2010;604:55–71. doi: 10.1007/978-1-60761-444-9_5. PubMed DOI PMC
Michalusova I, et al. Direct tryptic cleavage in bone tissue followed by LC-MS/MS as a first step towards routine characterization of proteins embedded in alveolar bones. Int. J. Mass Spectrom. 2020 doi: 10.1016/j.ijms.2020.116375. DOI
Smirnova TA, et al. Comparison of proteomic approaches used for the detection of potential biomarkers of Alzheimer’s disease in blood plasma. J. Sep. Sci. 2021 doi: 10.1002/jssc.202100468. PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing, <https://www.R-project.org/> (2022).
Cejnar P, Kuckova S, Prochazka A, Karamonova L, Svobodova B. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains. Rapid Commun. Mass Spectrom. 2018;32:871–881. doi: 10.1002/rcm.8110. PubMed DOI
Kuckova SH, et al. Evaluation of mass spectrometric data using principal component analysis for determination of the effects of organic lakes on protein binder identification. J. Mass Spectrom. 2015;50:1270–1278. doi: 10.1002/jms.3699. PubMed DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate - A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 1995;57:289–300.
Xin JW, et al. High-performance web services for querying gene and variant annotation. Genome Biol. 2016 doi: 10.1186/s13059-016-0953-9. PubMed DOI PMC
Ashburner M, et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Fabregat A, et al. The reactome pathway knowledgebase. Nucl. Acids Res. 2018;46:D649–D655. doi: 10.1093/nar/gkx1132. PubMed DOI PMC
Martens M, et al. WikiPathways: Connecting communities. Nucl. Acids Res. 2021;49:D613–D621. doi: 10.1093/nar/gkaa1024. PubMed DOI PMC
Skrzydlewska E. Toxicological and metabolic consequences of methanol poisoning. Toxicol. Mech. Method. 2003;13:277–293. doi: 10.1080/713857189. PubMed DOI
Fernando H, et al. Liver proteomics in progressive alcoholic steatosis. Toxicol. Appl. Pharm. 2013;266:470–480. doi: 10.1016/j.taap.2012.11.017. PubMed DOI PMC
Andringa KK, et al. Analysis of the liver mitochondrial proteome in response to ethanol and S-adenosylmethionine treatments: novel molecular targets of disease and hepatoprotection. Am. J. Physiol.-Gastr. L. 2010;298:G732–G745. doi: 10.1152/ajpgi.00332.2009. PubMed DOI PMC
Swart PC, Russell VA, Vlok NM, Dimatelis JJ. Early-ethanol exposure induced region-specific changes in metabolic proteins in the rat brain: A proteomics study. J. Mol. Neurosci. 2018;65:277–288. doi: 10.1007/s12031-018-1097-z. PubMed DOI
Waldron RT, Lugea A, Gulla A, Pandol SJ. Proteomic identification of novel plasma biomarkers and pathobiologic pathways in alcoholic acute pancreatitis. Front. Physiol. 2018 doi: 10.3389/fphys.2018.01215. PubMed DOI PMC
Abildgaard U. Highly purified antithrombin 3 with heparin cofactor activity prepared by disc electrophoresis. Scand. J. Clin. Lab. Invest. 1968;21:89–91. doi: 10.3109/00365516809076981. PubMed DOI
Brinkhous KM, Smith HP, Warner ED, Seegers WH. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin. Am. J. Physiol. 1939;125:683–687. doi: 10.1152/ajplegacy.1939.125.4.683. DOI
Rosenberg RD. In: Hemostasis and Thrombosis, Basic Principles and Clinical Practice. Colman RW, Hirsh J, Marder VJ, Salzman EW, editors. JB Lippincott Co; 1994. pp. 837–860.
Ofosu FA, et al. The inhibition of thrombin-dependent positive-feedback reactions is critical to the expression of the anticoagulant effect of heparin. Biochem. J. 1987;243:579–588. doi: 10.1042/bj2430579. PubMed DOI PMC
Ofosu FA, et al. Unfractionated heparin inhibits thrombin-catalysed amplification reactions of coagulation more efficiently than those catalysed by factor Xa. Biochem. J. 1989;257:143–150. doi: 10.1042/bj2570143. PubMed DOI PMC
Beguin S, Lindhout T, Hemker HC. The mode of action of heparin in plasma. Thromb. Haemost. 1988;60:457–462. doi: 10.1055/s-0038-1646990. PubMed DOI
Poletti LF, et al. Structural aspects of heparin responsible for interactions with von Willebrand factor. Arterioscl. Throm. Vasc. 1997;17:925–931. doi: 10.1161/01.Atv.17.5.925. PubMed DOI
Pieters M, de Maat MPM. Diet and haemostasis - A comprehensive overview. Blood Rev. 2015;29:231–241. doi: 10.1016/j.blre.2014.12.005. PubMed DOI
Montalescot G, et al. Effects of various anticoagulant treatments on von Willebrand factor release in unstable angina. J. Am. Coll. Cardiol. 2000;36:110–114. doi: 10.1016/S0735-1097(00)00695-1. PubMed DOI
Mukamal KJ, et al. Alcohol consumption and hemostatic factors analysis of the framingham offspring cohort. Circulation. 2001;104:1367–1373. doi: 10.1161/hc3701.096067. PubMed DOI
Djousse L, et al. Alcohol consumption and plasminogen activator inhibitor type 1: The national heart, lung, and blood institute family heart study. Am. Heart J. 2000;139:704–709. doi: 10.1016/S0002-8703(00)90052-8. PubMed DOI
Marquesvidal P, et al. Cardiovascular risk-factors and alcohol-consumption in France and northern-Ireland. Atherosclerosis. 1995;115:225–232. doi: 10.1016/0021-9150(94)05517-M. PubMed DOI
MacCallum PK, Cooper JA, Howarth DJ, Meade TW, Miller GJ. Sex differences in the determinants of fibrinolytic activity. Thromb. Haemost. 1998;79:587–590. doi: 10.1055/s-0037-1614950. PubMed DOI
Neiman J. Effects of ethanol on platelet thromboxane formation after ethanol withdrawal in chronic-alcoholics - an invitro study. Res. Exp. Med. 1988;188:175–181. doi: 10.1007/Bf01852318. PubMed DOI
Lee KW, Lip GYH. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity - A systematic review. Arch. Intern. Med. 2003;163:2368–2392. doi: 10.1001/archinte.163.19.2368. PubMed DOI
Parthasarathy NJ, Srikumar R, Manikandan S, Narayanan GS, Devi RS. Effect of methanol intoxication on spcific immune functions of albino rats. Cell Biol. Toxicol. 2007;23:177–187. doi: 10.1007/s10565-006-0151-8. PubMed DOI
Parthasarathy NJ, et al. Effect of methanol-induced oxidative stress on the neuroimmune system of experimental rats. Chem.-Biol. Interact. 2006;161:14–25. doi: 10.1016/j.cbi.2006.02.005. PubMed DOI
Moral AR, Cankayali I, Sergin D, Boyacilar O. Neuromuscular functions on experimental acute methanol intoxication. Turk. J. Anaesthesiol. 2015;43:337–343. doi: 10.5152/Tjar.2015.13471. PubMed DOI PMC
Rutkowski MJ, et al. Complement and the central nervous system: emerging roles in development, protection and regeneration. Immunol. Cell Biol. 2010;88:781–786. doi: 10.1038/icb.2010.48. PubMed DOI
van Beek J, et al. Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. NeuroReport. 2001;12:289–293. doi: 10.1097/00001756-200102120-00022. PubMed DOI
Osaka H, Mukherjee P, Aisen PS, Pasinetti GM. Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity. J. Cell Biochem. 1999;73:303–311. doi: 10.1002/(Sici)1097-4644(19990601)73:3<303::Aid-Jcb2>3.0.Co;2-2. PubMed DOI
Rahpeymai Y, et al. Complement: A novel factor in basal and ischemia-induced neurogenesis. EMBO J. 2006;25:1364–1374. doi: 10.1038/sj.emboj.7601004. PubMed DOI PMC
Jarlestedt K, et al. Receptor for complement peptide C3a: A therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 2013;27:3797–3804. doi: 10.1096/fj.13-230011. PubMed DOI
Huang YY, et al. Moderate alcohol consumption and atherosclerosis Meta-analysis of effects on lipids and inflammation. Wien. Klin. Wochenschr. 2017;129:835–843. doi: 10.1007/s00508-017-1235-6. PubMed DOI
Molotkov A, Duester G. Retinol/ethanol drug interaction during acute alcohol intoxication in mice involves inhibition of retinol metabolism to retinoic acid by alcohol dehydrogenase. J. Biol. Chem. 2002;277:22553–22557. doi: 10.1074/jbc.M201603200. PubMed DOI
Clugston RD, Blaner WS. The adverse effects of alcohol on vitamin a metabolism. Nutrients. 2012;4:356–371. doi: 10.3390/nu4050356. PubMed DOI PMC
Smith JC, Brown ED, White SC, Finkelstein JD. Plasma vitamin-a and zinc concentrations in patients with alcoholic cirrhosis. Lancet. 1975;1:1251–1252. doi: 10.1016/S0140-6736(75)92252-7. PubMed DOI
Mcclain CJ, Vanthiel DH, Parker S, Badzin LK, Gilbert H. Alterations in zinc, vitamin-a, and retinol-binding protein in chronic-alcoholics - possible mechanism for night blindness and hypogonadism. Alcohol. Clin. Exp. Res. 1979;3:135–141. doi: 10.1111/j.1530-0277.1979.tb05287.x. PubMed DOI
Majumdar SK, Shaw GK, Thomson AD. Vitamin-a utilization status in chronic-alcoholic patients. Int. J. Vitam. Nutr. Res. 1983;53:273–279. PubMed
Leo MA, Lieber CS. Hepatic vitamin-a depletion in alcoholic liver-injury. New. Engl. J. Med. 1982;307:597–601. doi: 10.1056/Nejm198209023071006. PubMed DOI
Leo MA, Sato M, Lieber CS. Effect of hepatic vitamin-a depletion on the liver in humans and rats. Gastroenterology. 1983;84:562–572. doi: 10.1016/0016-5085(83)90081-1. PubMed DOI
Bell H, et al. Retinol and retinyl esters in patients with alcoholic liver disease. J. Hepatol. 1989;8:26–31. doi: 10.1016/0168-8278(89)90158-x. PubMed DOI
Adachi S, et al. Reduced retinoid content in hepatocellular carcinoma with special reference to alcohol consumption. Hepatology. 1991;14:776–780. doi: 10.1002/hep.1840140506. PubMed DOI
Bavik CO, Busch C, Eriksson U. Characterization of a plasma retinol-binding protein membrane-receptor expressed in the retinal-pigment epithelium. J. Biol. Chem. 1992;267:23035–23042. doi: 10.1016/S0021-9258(18)50052-1. PubMed DOI
Chen JL, et al. interphotoreceptor retinol-binding protein ameliorates diabetes-induced retinal dysfunction and neurodegeneration through rhodopsin. Diabetes. 2021;70:788–799. doi: 10.2337/db20-0609. PubMed DOI PMC
Lai LJ, Hsu WH, Wu AM, Wu JH. Ocular injury by transient formaldehyde exposure in a rabbit eye model. PLoS ONE. 2013 doi: 10.1371/journal.pone.0066649. PubMed DOI PMC
Yokomizo H, et al. Retinol binding protein 3 is increased in the retina of patients with diabetes resistant to diabetic retinopathy. Sci. Transl. Med. 2019 doi: 10.1126/scitranslmed.aau6627. PubMed DOI PMC
Zeng S, et al. Interphotoreceptor retinoid-binding protein (IRBP) in retinal health and disease. Front Cell Neurosci. 2020;14:577935. doi: 10.3389/fncel.2020.577935. PubMed DOI PMC
Blednov YA, Benavidez JM, Black M, Mayfield J, Harris RA. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines. Neuropharmacology. 2015;95:309–320. doi: 10.1016/j.neuropharm.2015.03.015. PubMed DOI PMC
Yang M, et al. Ultraperformance liquid chromatography tandem mass spectrometry method to determine formaldehyde hemoglobin adducts in humans as biomarker for formaldehyde exposure. Chem. Res. Toxicol. 2017;30:1592–1598. doi: 10.1021/acs.chemrestox.7b00114. PubMed DOI PMC