Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
32914262
PubMed Central
PMC7496060
DOI
10.1007/s11274-020-02897-0
PII: 10.1007/s11274-020-02897-0
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA, Algae phylogeny, Electron microscopy, Fatty acids, ITS, Strain FGS-001,
- MeSH
- biologické pigmenty analýza MeSH
- biotechnologie MeSH
- Chlorophyta klasifikace cytologie genetika MeSH
- druhová specificita MeSH
- feofytiny analýza MeSH
- fylogeneze * MeSH
- karotenoidy analýza MeSH
- kyselina alfa-linolenová analýza MeSH
- mastné kyseliny analýza MeSH
- mikrořasy klasifikace cytologie genetika izolace a purifikace MeSH
- ribozomální DNA MeSH
- RNA ribozomální 18S genetika MeSH
- xanthofyly MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
- Názvy látek
- astaxanthine MeSH Prohlížeč
- biologické pigmenty MeSH
- feofytiny MeSH
- karotenoidy MeSH
- kyselina alfa-linolenová MeSH
- mastné kyseliny MeSH
- neoxanthin MeSH Prohlížeč
- ribozomální DNA MeSH
- RNA ribozomální 18S MeSH
- violaxanthin MeSH Prohlížeč
- xanthofyly MeSH
A terrestrial green microalga was isolated at Ås, in Akershus County, Norway. The strain corresponded to a coccoid chlorophyte. Morphological characteristics by light and electron microscopy, in conjunction with DNA amplification and sequencing of the 18 s rDNA gene and ITS sequences, were used to identify the microalgae. The characteristics agree with those of the genus Coelastrella defined by Chodat, and formed a sister group with the recently described C. thermophila var. globulina. Coelastrella is a relatively small numbered genus that has not been observed in continental Norway before; there are no previous cultures available in collections of Norwegian strains. Gas chromatography analyses of the FAME-derivatives showed a high percentage of polyunsaturated fatty acids (44-45%) especially linolenic acid (C18:3n3; 30-34%). After the stationary phase, the cultures were able to accumulate several carotenoids as neoxanthin, pheophytin a, astaxanthin, canthaxanthin, lutein, and violaxanthin. Due to the scarcity of visual characters suitable for diagnostic purposes and the lack of DNA sequence information, there is a high possibility that species of this genus have been neglected in local environmental studies, even though it showed interesting properties for algal biotechnology.
Zobrazit více v PubMed
Abe K, Hattori H, Hirano M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem. 2007;100:656–661. doi: 10.1016/j.foodchem.2005.10.026. DOI
An SS, Friedl T, Hegewald E. Phylogenetic relationships of Scenedesmus and Scenedesmus-like coccoid green algae as inferred from ITS-2 rDNA sequence comparisons. Plant Biol. 1999;1:418–428. doi: 10.1111/j.1438-8677.1999.tb00724.x. DOI
Ancona-Canché K, López-Adrián S, Espinosa-Aguilar M, Garduño-Solórzano G, Toledano-Thompson T, Narváez-Zapata J, Valdez-Ojeda R. Molecular phylogeny and morphologic data of strains of the genus Coelastrella (Chlorophyta, Scenedesmaceae) from a tropical region in North America (Yucatan Peninsula) Bot Sci. 2017;95(3):527–537. doi: 10.17129/botsci.1201. DOI
Artsdatabanken (2018) Trondheim, Norway. https://artskart.artsdatabanken.no/. Accessed 27 Nov 2018
Borchhardt N, Baum C, Mikhailyuk T, Karsten U. Biological soil crusts of Arctic Svalbard—water availability as potential controlling factor for microalgal biodiversity. Front Microbiol. 2017;8:1485. doi: 10.3389/fmicb.2017.01485. PubMed DOI PMC
Bruteig IE, Thomsen MG, Altin D. Vekstrespons hos tre aerofyttiske algar på tilførsel av nitrogen. NINA Oppdragsmeld. 2001;680:1–19.
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Cardon ZG, Peredo EL, Dohnalkova AC, Gershone HL, Bezanilla M. A model suite of green algae within the Scenedesmaceae for investigating contrasting desiccation tolerance and morphology. J Cell Sci. 2018;131:jcs212233. doi: 10.1242/jcs.212233. PubMed DOI
Cavalier-Smith T, Chao E-Y. Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista) J Mol Evol. 2006;62(4):388–420. doi: 10.1007/s00239-004-0353-8. PubMed DOI
Chihara M, Nakayama T, Inouye I, Kodama M. Chlorococcum littorale, a new marine green coccoid alga (Chlorococcales, Chlorophyceae) Arch Protistenkd. 1994;144:227–235. doi: 10.1016/S0003-9365(11)80133-8. DOI
Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001. PubMed DOI
Chodat R. Matériaux pour l'histoire des algues de la Suisse. Bull Soc Bot Geneve Sér. 1922;2(13):66–114.
Comas AA, Krienitz L. Comparative LM-and SEM-studies on Coelastrum (Chlorophyta, Chlorococcales) under culture conditions. Algol Stud. 1997;87:87–98. doi: 10.1127/algol_stud/87/1997/87. DOI
Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 2015;10:e0127838. doi: 10.1371/journal.pone.0127838. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772. doi: 10.1038/nmeth.2109. PubMed DOI PMC
Dimitrova P, Marinova G, Alexandrov S, Iliev I, Pilarski P. Biochemical characteristics of a newly isolated strain Coelastrella sp. BGV cultivated at different temperatures and light intensities. Annuaire de l’Université de Sofia “St. Kliment Ohridski” Faculte de Biologie. 2017;102:139–114.
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88. doi: 10.1371/journal.pbio.0040088. PubMed DOI PMC
Eliáš M, Němcová Y, Škaloud P, Neustupa J, Kaufnerová V, Šejnohová L. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore. Int J Syst Evol Microbiol. 2010;60:1224–1235. doi: 10.1099/ijs.0.012963-0. PubMed DOI
Feng J, Guo Y, Zhang X, Wang G, Lv J, Liu Q, Xie S. Identification and characterization of a symbiotic alga from soil bryophyte for lipid profiles. Biol Open. 2016;5:1317–1323. doi: 10.1242/bio.019992. PubMed DOI PMC
Fučíková K, Lewis PO, Lewis LA. Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta) J Phycol. 2014;50:14–25. doi: 10.1111/jpy.12118. PubMed DOI
Gärtner G, Ingolić E. Zur Morphologie und taxonomie einiger bodenalgen (Unterfamilie Scotiellocystoideae, Chlorellaceae) aus der Algensammlung in Innsbruck (ASIB, Austria) Arch Protistenkd. 1993;143:101–112. doi: 10.1016/S0003-9365(11)80279-4. DOI
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–778. doi: 10.1016/j.jtbi.2008.04.005. PubMed DOI
Goecke F, Jerez CG, Zachleder V, Figueroa FL, Řezanka T, Bišová K, Vitová M. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta) Front Microbiol. 2015;6:2. doi: 10.3389/fmicb.2015.00002. PubMed DOI PMC
Gopalakrishnan KK, Novis PM, Visnovsky G. Alpine scenedesmaceae from New Zealand: new taxonomy. N Z J Bot. 2014;52(1):84–99. doi: 10.1080/0028825X.2013.859628. DOI
Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 29 May 2020
Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF. DNA Barcoding green microalgae isolated from Neotropical inland waters. PLoS ONE. 2016;11:e0149284. doi: 10.1371/journal.pone.0149284. PubMed DOI PMC
Hanagata N. Phylogeny of the subfamily Scotiellocystoideae and related taxa inferred from 18S rRNA gene sequence data. J Phycol. 1998;34:1049–1054. doi: 10.1046/j.1529-8817.1998.341049.x. DOI
Hanagata N. New species of Coelastrella and Scenedesmus (Chlorophyceae, Chlorophyta) J Jpn Bot. 2001;76:129–136.
Hanagata N, Karube I, Chihara M. Bark-inhabiting green algae in Japan (1) Scenedesmus komarekii and Coelastrella multistriata var. multistriata (Scotiellocystoideae, Chlorellaceae, Chlorophyceae) J Jpn Bot. 1996;71:87–97.
Harris EH. The Chlamydomonas sourcebook. San Diego: Academic Press Inc; 1989.
Hasegawa M, Kishino H, Yano T-A. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. PubMed DOI
Hegewald E, Hanagata N. Phylogenetic studies on Scenedesmaceae (Chlorophyta) Algol Stud. 2000;100:29–49. doi: 10.1127/algol_stud/100/2000/29. DOI
Hegewald E, Hanagata N. Validation of the new combinations of Coelastrella and Neodesmus and the description of the new subfamily Desmodesmoideae of the Scenedesmaceae (Chlorophyta) Algol Stud. 2002;105:7–9. doi: 10.1127/algol_stud/105/2002/7. DOI
Hegewald E, Wolf M, Keller A, Friedl T, Krienitz L. ITS2 sequence-structure phylogeny in the Scenedesmaceae with special reference to Coelastrum (Chlorophyta, Chlorophyceae), including the new genera Comasiella and Pectinodesmus. Phycologia. 2010;49(4):325–335. doi: 10.2216/09-61.1. DOI
Hodač L (2015) Green algae in soil: assessing their biodiversity and biogeography with molecular-phylogenetic methods based on cultures. PhD Thesis, Georg-August-Universität Göttingen, Germany, p 185
Hu C-W (2012) Isolation and characterization of a new thermotolerant pigment-producing microalga: salt stress enhances pigment and oil biosynthesis in Coelastrella sp. F50. Master Thesis, National Sun Yat-sen University, China, p 32
Hu C-W, Chuang L-T, Yu P-C, Chen C-NN. Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem. 2013;138:2071–2078. doi: 10.1016/j.foodchem.2012.11.133. PubMed DOI
Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S. Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol. 1998;49:655–662. doi: 10.1007/s002530051228. DOI
Kalina T, PunČochářová M. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae) Algol Stud. 1987;45:473–521.
Karpagam R, Jawaharraj K, Ashokkumar B, Sridhar J, Varalakshmi P. Unraveling the lipid and pigment biosynthesis in Coelastrella sp. M-60: genomics-enabled transcript profiling. Algal Res. 2018;29:277–289. doi: 10.1016/j.algal.2017.11.031. DOI
Katoh K, Misawa K, Kuma K-i, Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kaufnerová V, Eliáš M. The demise of the genus Scotiellopsis Vinatzer (Chlorophyta) Nova Hedwig. 2013;97(3–4):415–428. doi: 10.1127/0029-5035/2013/0116. DOI
Kawasaki S, Mizuguchi K, Sato M, Kono T, Shimizu H. A novel astaxanthin-binding photooxidative stress-inducible aqueous carotenoprotein from a eukaryotic microalga isolated from asphalt in midsummer. Plant Cell Physiol. 2013;54(7):1027–1040. doi: 10.1093/pcp/pct080. PubMed DOI
Kawasaki Y, Nakada T, Tomita M. Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. J Phycol. 2015;51:1000–1016. doi: 10.1111/jpy.12343. PubMed DOI
Kawasaki S, Yoshida R, Ohkoshi K, Toyoshima H. Coelastrella astaxanthina sp. nov. (Sphaeropleales, Chlorophyceae), a novel microalga isolated from an asphalt surface in midsummer in Japan. Phycol Res. 2019;67:1–8. doi: 10.1111/pre.12412. DOI
Kim GH, Klochkova TA, Kang SH. Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (high Arctic Sea area) J Environ Biol. 2008;29(4):485–491. PubMed
Kol E. On the red snow of Finse (Norway) Ann Hist Nat Mus Nat Hung. 1963;55:155–160.
Krienitz L, Bock C. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia. 2012;698:295–326. doi: 10.1007/s10750-012-1079-z. DOI
Lee H-G, Song HJ, Kim D-S, Cho CH, La H-J, Oh H-M, Yoon HS. Unique mitochondrial genome structure of the green algal strain YC001 (Sphaeropleales, Chlorophyta), with morphological observations. Phycologia. 2016;55(1):72–78. doi: 10.2216/15-71.1. DOI
Luo L, He H, Yang C, Wen S, Zeng G, Wu M, Zhou Z, Lou W. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour Technol. 2016;216:135–141. doi: 10.1016/j.biortech.2016.05.059. PubMed DOI
Malavasi V, Škaloud P, Rindi F, Tempesta S, Paoletti M, Pasqualetti M. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta) PLoS ONE. 2016;11(3):e0151137. doi: 10.1371/journal.pone.0151137. PubMed DOI PMC
Matsuzaki R, Nozaki H, Kawachi M. Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyta) strains, with the new description of two snow-inhabiting Chloromonas species. PLoS ONE. 2018;13(3):e0193603. doi: 10.1371/journal.pone.0193603. PubMed DOI PMC
Matuła J, Pietryka M, Richter D, Wojtuń B. Cyanoprokaryota and algae of Arctic terrestrial ecosystems in the Hornsund area, Spitsbergen. Pol Polar Res. 2007;28(4):283–315.
Miller DH. Cell wall chemistry and ultrastructure of Chlorococcum oleofaciens (Chlorophyta) J Phycol. 1978;14(2):189–194. doi: 10.1111/j.1529-8817.1978.tb02447.x. DOI
Minhas AK, Hodgson P, Barrow CJ, Sashidhar B, Adholeya A. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour Technol. 2016;211:556–565. doi: 10.1016/j.biortech.2016.03.121. PubMed DOI
Minyuk GS, Chelebieva ES, Chubchikova IN, Dantsyuk NV, Drobetskaya IV, Sakhon EG, Chekanov KA, Solovchenko AE. Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae. 2017;32(3):245–259. doi: 10.4490/algae.2017.32.8.6. DOI
NCBI Resource Coordinators Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45(D1):D12–D17. doi: 10.1093/nar/gkv1290. PubMed DOI PMC
Norwegian Culture Collection of Algae, NORCCA. https://niva-cca.no/. Accessed 27 Nov 2018
O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci. 2007;85:1511–1521. doi: 10.2527/jas.2006-491. PubMed DOI
Olsen AB, Hjortaas M, Tengs T, Hellberg H, Johansen R. First description of a new disease in rainbow trout (Oncorhynchus mykiss (Walbaum)) similar to heart and skeletal muscle inflammation (HSMI) and detection of a gene sequence related to Piscine Orthoreovirus (PRV) PLoS ONE. 2015;10(7):e0131638. doi: 10.1371/journal.pone.0131638. PubMed DOI PMC
Pegg C, Wolf M, Alanagreh L, Portman R, Buchheim MA. Morphological diversity masks phylogenetic similarity of Ettlia and Haematococcus (Chlorophyceae) Phycologia. 2015;54(4):385–397. doi: 10.2216/15-015.1. DOI
Pickett-Heaps JD, Staehelin LA. The ultrastructure of Scenedesmus (Chlorophyceae). II. Cell division and colony formation. J Phycol. 1975;11:186–202. doi: 10.1111/j.1529-8817.1975.tb02766.x. DOI
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia) Fottea. 2018;18(1):1–18. doi: 10.5507/fot.2017.010. PubMed DOI PMC
PunČochářová M, Kalina T. Taxonomy of the genus Scotiellopsis Vinatzer (Chlorococcales, Chlorophyta) Algol Stud. 1981;27:119–147. doi: 10.1127/algol_stud/27/1981/119. DOI
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 25 Oct 2019
Rambaut A (2018) Figtree v1.4.4. https://github.com/rambaut/figtree
Remias D, Procházková L, Holzinger A, Nedbalová L. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonas, Chlorophyta) from the Austrian Alps. Phycologia. 2018;57(5):581–592. doi: 10.2216/18-45.1. PubMed DOI PMC
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592–593. doi: 10.1093/bioinformatics/btq706. PubMed DOI PMC
Serive B, Nicolau E, Bérard J-B, Kaas R, Pasquet V, Picot L, Cadoret J-P. Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS ONE. 2017;12(2):e0171872. doi: 10.1371/journal.pone.0171872. PubMed DOI PMC
Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta) J Phycol. 2016;52:599–617. doi: 10.1111/jpy.12422. PubMed DOI
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma. 2017;254(3):1323–1340. doi: 10.1007/s00709-016-1024-5. PubMed DOI
Stibal M, Šabacká M, Kaštovská K. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol. 2006;52:644–654. doi: 10.1007/s00248-006-9083-3. PubMed DOI
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.
Thao TY, Linh DTN, Si VC, Carter TW, Hill RT. Isolation and selection of microalgal strains from natural water sources in Viet Nam with potential for edible oil production. Mar Drugs. 2017;15:194. doi: 10.3390/md15070194. PubMed DOI PMC
The Culture Collection of Cryophilic Algae. https://cccryo.fraunhofer.de/web/infos/welcome/. Accessed 27 Nov 2018
Tschaikner A, Ingolić E, Gärtner G. Observations in a new isolate of Coelastrella terrestris (Reisigl) Hegewald & Hanagata (Chlorophyta, Scenedesmaceae) from Alpine soil (Tyrol, Austria) Phyton (Horn, Austria) 2007;46(2):237–245.
Tschaikner A, Ingolić E, Stoyneva MP, Gärtner G. Autosporulation in the soil alga Coelastrella terrestris (Chlorophyta, Scenedesmaceae, Scenedesmoideae) Phytol Balc. 2007;13(1):29–34.
Tschaikner A, Gärtner G, Kofler W. Coelastrella aeroterrestrica sp. Nov. (Chlorophyta, Scenedesmoideae)—a new, obviously often overlooked aeroterrestrial species. Algol Stud. 2008;128(1):11–20. doi: 10.1127/1864-1318/2008/0128-0011. DOI
Uzunov BA, Stoyneva MP, Gärtner G, Kofler W. First record of Coelastrella species (Chlorophyta: Scenedesmaceae) in Bulgaria. Ber Nat-Med Verein, Innsbruck. 2008;95:27–34.
Vinatzer G. Neue bodenalgen aus den dolomiten. Plant Syst Evol. 1975;123:213–235. doi: 10.1007/BF00989405. DOI
Wang Q, Song H, Liu X, Zhu H, Hu Z, Liu G. Deep genomic analysis of Coelastrella saipanensis (Scenedesmaceae, Chlorophyta): Comparative chloroplast genomics of Scenedesmaceae. Eur J Phycol. 2019;54(1):52–65. doi: 10.1080/09670262.2018.1503334. DOI
Wang Q, Song H, Liu X, Liu B, Hu Z, Liu G. Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. J Phycol. 2019 doi: 10.1111/jpy.12915. PubMed DOI
Watanabe S, Lewis LA. Phylogenetic interpretation of light and electron microscopic features of selected members of the phylogroup Moewusinia (Chlorophyceae), with new generic taxonomy. Phycologia. 2017;56(3):329–353. doi: 10.2216/16-64.1. DOI
West JA, McBride DL. Long term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta) Hydrobiologia. 1999;398–399:101–114. doi: 10.1023/A:1017025815001. DOI
White TJ, Bruns T, Lee S, Taylor J. PCR protocols: a guide to methods and applications. Cambridge: Academic press; 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322.
Wiik-Nielsen J, Mo TA, Kolstad H, Mohammad SN, Hytterød S, Powell MD. Morphological diversity of Paramoeba perurans trophozoites and their interaction with Atlantic salmon, Salmo salar L., gills. J Fish Dis. 2016;39(9):1113–1123. doi: 10.1111/jfd.12444. PubMed DOI
Wijffels RH, Barbosa MJ, Eppink MHM. Microalgae for the production of bulk chemicals and biofuels. Biofuel Bioprod Biorefin. 2010;4(3):287–295. doi: 10.1002/bbb.215. DOI
Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8(1):352–359. doi: 10.32614/RJ-2016-025. DOI
Xiao Y, Xing Z-f, Zhou F, Wang M. Comparison of the imaging effects of Cryo-scanning electron microscopy and conventional scanning electron microscopy on aquatic plants. J Chin Electron Microsc Soc. 2017;36(2):173–176.
Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994;39(3):306–314. doi: 10.1007/BF00160154. PubMed DOI
Yule GU. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Philos Trans R Soc B. 1925;213(402–410):21–87.