DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27028195
PubMed Central
PMC4814044
DOI
10.1371/journal.pone.0151137
PII: PONE-D-15-51238
Knihovny.cz E-zdroje
- MeSH
- Chlorophyta klasifikace genetika ultrastruktura MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA genetika MeSH
- mikrořasy klasifikace genetika ultrastruktura MeSH
- molekulární evoluce MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mezerníky ribozomální DNA MeSH
Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution.
Department of biological and ecological sciences Tuscia University Viterbo Italy
Department of Botany Faculty of Science Charles University of Prague Prague Czech Republic
Dipartimento di Scienze della Vita e dell'Ambiente Università Politecnica delle Marche Ancona Italy
Zobrazit více v PubMed
De Queiroz K. Species concepts and species delimitation. Syst Biol. 2007; 56: 879–886. PubMed
Škaloud P, Steinová J, Řídká T, Vančurová L, Peksa O. Assembling the challenging puzzle of algal biodiversity: Species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J Phycol. 2015; 51: 507–527. PubMed
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, et al. Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci. 2012; 31: 1–46.
Darienko T, Gustavs L, Eggert A, Wolf W, Pröschold T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE. 2015; 10: e0127838 10.1371/journal.pone.0127838 PubMed DOI PMC
López-Bautista JM, Rindi F, Casamatta DA. The systematics of subaerial algae In Seckbach J, editors. Extremophilic algae, cyanobacteria and non-photosynthetic protists: from Prokaryotes to astrobiology.: Springer; Verlag, Dordrecht; 2007. pp. 601–617.
Luo W, Pflugmacher S, Pröschold T, Walz N, Krienitz L. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist. 2006; 157: 315–333. PubMed
Coesel PFM, Krienitz L. Diversity and geographic distribution of desmids and other coccoid green algae. Biodiv Conserv. 2008; 17: 381–392.
Krienitz L, Bock C. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia. 2012; 698: 295–326.
Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, et al. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol. 1999; 35: 587–598.
Moniz MBJ, Rindi F, Novis PM, Broady PA, Guiry MD. Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J Phycol. 2012; 48: 940–955. PubMed
Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukar Microbiol. 2013; 60: 350–362. PubMed
Fučíková K, Lewis PO, Lewis LA. Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta). J Phycol. 2014; 50: 14–25. PubMed
Sadowska-Des AD, Dal Grande F, Lumbsch HT, Beck A, Otte J, Hur JS, et al. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol Phylogenet Evol. 2014; 76: 202–210. 10.1016/j.ympev.2014.03.020 PubMed DOI
Pröschold T, Leliaert F. Systematics of the green algae: conflict of classic and modern approaches In Brodie J, Lewis J, editors. Unravelling the algae: the past, present, and future of the algae systematic.: London, UK, Taylor and Francis; 2007. pp. 123–153.
Coleman AW. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol Phylogenet Evol. 2009; 50: 197–203. 10.1016/j.ympev.2008.10.008 PubMed DOI
Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, et al. DNA-based species delimitation in algae. Eur J Phycol. 2014; 49: 179–196.
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol. 2012; 2: 1864–1877. PubMed
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013; 22: 4369–4383. 10.1111/mec.12413 PubMed DOI
Leavit SD. Moreau CS, Lumbsch HT. The dynamic discipline of species delimitation: Progress toward effectively recognizing species boundaries in natural populations In Upreti D.K. D PK,S V,B R. Recent Advances in Lichenology. Modern methods and approaches in lichen systematics and culture techniques, Volume 2; 2015. 11–44.
Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol. 2006; 55: 595–609. PubMed
Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proceed Nat Acad Sci U S. 2010; 107: 9264–9269. PubMed PMC
Zhang JJ, Kapli P, Pavlidis P, Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013; 29: 2869–2876. 10.1093/bioinformatics/btt499 PubMed DOI PMC
Corander J, Marttinen P, Siren J, Tang J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinf. 2008; 9: 539. PubMed PMC
Huelsenbeck JP, Andolfatto P, Huelsenbeck ET. Structurama: Bayesian inference of population structure. Evol Bioinf Online. 2011; 7: 55–59. PubMed PMC
Jones GR. bioRxiv. [Online].; 2014. Available: 10.1101/010199.
Jaag O. Coccomyxa Schmidle, Monographie einer Algengattung. Beitr Kryptogam Schweiz. 1933; 8: 1–132.
Tsarenko PM, John DM. Order Sphaeropleales sensu lato In John DM, Whitton BA, Brook AJ, editors. The freshwater algal flora of the British Isles—second edition.: Cambridge University Press, Cambridge; 2011. pp. 418–474.
Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen: Berlin-Heidelberg: Springer Spektrum; 1995.
Verma V, Bhatti S, Huss VAR, Colman B. Photosynthetic inorganic carbon acquisition in an acid-tolerant, free-living species of Coccomyxa (Chlorophyta). J Phycol. 2009; 45: 847–854. PubMed
Surek B, Melkonian M. Culture Collection of Algae at the University of Cologne: A new collection of axenic algae with emphasis on flagellates. Nova Hedwigia. 2004; 79: 77–92.
McFadden GI, Melkonian M. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia. 1986; 25: 551–557.
Hall JD, Fučíková K, Lo C, Lewis LA, Karol KG. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algol. 2010; 31: 529–555.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications.: Academic Press, San Diego; 1990. pp. 315–322.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30: 3059–66. PubMed PMC
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17: 540–552. PubMed
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012; 9: 772. PubMed PMC
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD. Thesis: The University of Texas, Austin; 2006.
Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods): Sinauer Associates, Sunderland, Massachusetts; 2002.
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012; 29: 1969–1973. 10.1093/molbev/mss075 PubMed DOI PMC
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. [Online].; 2014. Available from: http://beast.bio.ed.ac.uk/Tracer.
Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJ, et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol. 2009; 58: 298–311. 10.1093/sysbio/syp027 PubMed DOI
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; [Online].; 2015. Available: http://www.R-project.org.
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014; 10: e1003537 10.1371/journal.pcbi.1003537 PubMed DOI PMC
Jones G. SpeciesDelimitationAnalyser. [Online].; 2015. Available: http://www.indriid.com/software.html.
Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE); 2010; New Orleans, LA. 1–8.
Nemjová K. Molecular phylogenetics and geometric morphometrics of aerophytic green algae of Coccomyxa/Pseudococcomyxa s.l. complex. M.Sc. Thesis: Charles University in Prague; 2009.
Zoller S, Lutzoni F. Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Mol Phylogenet Evol. 2003; 29: 629–640. PubMed
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R. Bioinformatics. 2004; 20: 289–290. PubMed
Dray S, Dufour A. The ade4 package: implementing the duality diagram for ecologists. J Stat Soft. 2007; 22: 1–20.
Schliep K. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011; 27: 592–593. 10.1093/bioinformatics/btq706 PubMed DOI PMC
Brunner U, Honegger R. Chemical and ultrastructural studies on the distribution of sporopollenin like biopolymers in six genera of lichen phycobionts. Can J Bot. 1985; 63: 2221–2230.
Albertano P, Pinto G, Pollio A, Taddei R. Morphology, ultrastructure and ecology of an acidophilic alga, Pseudococcomyxa simplex (Mainx) Fott (Chlorococcales). Algol Stud. 1990; 59: 81–95.
Pasqualetti M, Tempesta S, Malavasi V, Barghini P, Fenice M. Lutein production by Coccomyxa sp. SCCA048 isolated from a heavy metal-polluted river in Sardinia (Italy). J Environ Protect Ecol. 2015; 16: 1262–1272.
Malavasi V, Cao G. The Sardinian Culture Collection of Algae (SCCA): ex situ conservation of biodiversity and future technological applications. Nova Hedwigia. 2015; 101: 273–283.
Rivasseau C, Farhi E, Atteia A, Couté A, Gromova G, De Gouvion Saint Cyr D, et al. An extremely radioresistant green eukaryote for radionuclide bio-decontamination in the nuclear industry. Energy Environ Sci. 2013; (6): 1230–1239.
Garbayo I, Torronteras R, Forján E, Cuaresma M, Casal C, Mogedas B, et al. Identification and physiological aspects of a novel carotenoid-enriched metal resistant microalga isolated from an acidic river in Huelva (Spain). J Phycol. 2012; 47: 607–614. PubMed
Ryšánek D, Hrčková K, Škaloud P. Global ubiquity and local endemism of free-living terrestrial protists: Phylogeographic assessment of the streptophyte alga Klebsormidium. Environ Microbiol. 2015; 17: 689–698. 10.1111/1462-2920.12501 PubMed DOI
Hebert PDN, Cywinska A, Ball SL, De Waard JR. Biological identifications through DNA barcodes. Proc R Soc London B. 2003; 270: 313–321. PubMed PMC
Naciri Y, Linder HP. Species delimitation and relationships: the dance of the seven veils. Taxon. 2015; 64: 3–16.
Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol. 2012; 27: 480–488. 10.1016/j.tree.2012.04.012 PubMed DOI
Hoef-Emden K. Pitfalls of establishing DNA barcoding systems in protists: the Cryptophyceae as a test case. PLoS One. 2012; 7: e43652 10.1371/journal.pone.0043652 PubMed DOI PMC
Puillandre N, Modica MV, Zhang Y, Sirovich L, Boisselier MC, Cruaud C, et al. Large-scale species delimitation method for hyperdiverse groups. Mol Ecol. 2012; 21: 2671–2691. 10.1111/j.1365-294X.2012.05559.x PubMed DOI
Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent (GMYC) approach: a revised method and evaluation on simulated datasets. Syst Biol. 2013; 62: 707–724. 10.1093/sysbio/syt033 PubMed DOI PMC
Leliaert F, Verbruggen H, Wysor B, De Clerck O. DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). Mol Phylogenet Evol. 2009; 53: 122–133. 10.1016/j.ympev.2009.06.004 PubMed DOI
Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc R Soc B Biol Sci. 2013; 280: 20122660. PubMed PMC
Belton GS, Prud’homme van Reine WF, Huisman JM, Draisma SGA, Gurgel CFD. Resolving phenotypic plasticity and species designation in the morphologically challenging Caulerpa racemosa-peltata complex (Chlorophyta, Caulerpaceae). J Phycol. 2014; 50: 32–54. PubMed
Pardo C, Lopez L, Peña V, Hernandez-Kantun J, Le Gall L, Barbara I, et al. A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR maritime area. PLoS One. 2014; 9: e104073 10.1371/journal.pone.0104073 PubMed DOI PMC
Lohse K. Can mtDNA barcodes be used to delimit species? A response to Pons, et al. (2006). Syst Biol. 2006; 58: 439–442. PubMed
Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biology. 2005; 3: e422 PubMed PMC
Setiadi MI, McGuire JA, Brown RM, Zubairi M, Iskandar DT, Andayani N, et al. Adaptive radiation and ecological opportunity in Sulawesi and Philippine fanged frog (Limnonectes) communities. Am Nat. 2011; 178: 221–240. 10.1086/660830 PubMed DOI
Esselstyn JA, Evans BJ, Sedlock JL, Anwarali Khan FA, Heaney LR. Single-locus species delimitation: a test of the mixed Yule—coalescent model, with an empirical application to Philippine round-leaf bats. Proc R Soc B Biol Sci. 2012; 279: 3678–3686. PubMed PMC
Dellicour S, Flot JF. Delimiting species-poor datasets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Syst Biol. 2015; 64: 900–908. 10.1093/sysbio/syu130 PubMed DOI
Caisová L, Perez Reyes C, Alamo VC, Quintana AM, Surek B, Melkonian M. Barrancaceae: a new greeen algal lineage with structural and behavioral adaptations to a fluctuating environment. Am J Bot. 2015; 102: 1482–1492. 10.3732/ajb.1500199 PubMed DOI
Darienko T, Pröschold T. Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). J Phycol. 2015; 51: 394–400. PubMed
Fučíková K, Lewis PO, Lewis LA. Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycol Res. 2014; 62: 294–305.
Škaloud P, Němcová Y, Pytela J, Bogdanov NI, Bock C, Pickinpaugh SH. Planktochlorella nurekis, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga carrying significant biotechnological potential. Fottea. 2014; 14: 53–62.
Vančurová L, Peksa O, Němcová Y, Škaloud P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa. 2015; 219: 118–132.
Ramos GJP, Bicudo CED, Moura CWD. Oocystis apicurvata sp. nov. (Oocystaceae, Trebouxiophyceae), a new species of green algae from Chapada Diamantina northeast Brazil. Brazil J Bot. 2015; 38: 171–173.
Heesch S, Pažoutová M, Moniz MBJ, Rindi F. Prasiolales (Trebouxiophyceae, Chlorophyta) of the Svalbard Archipelago: diversity, biogeography, and description of the new genera Prasionella and Prasionema. Eur J Phycol. 2016. in press.
Raxworthy CJ, Ingram CM, Pearson RG. Species delimitation applications for ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups from Madagascar. Syst Biol. 2007; 56: 907–923. PubMed
Florio AM, Ingram CM, Rakotondravony HA, Louis EE, Raxworthy CJ. Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar. J Evol Biol. 2012; 25: 1399–1414. 10.1111/j.1420-9101.2012.02528.x PubMed DOI
Zhou WW, Wen Y, Fu J, Xu YB, Jin JQ, Ding L, et al. Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai—Tibetan Plateau. Mol Ecol. 2012; 21: 960–973. 10.1111/j.1365-294X.2011.05411.x PubMed DOI
Meudt HM, Lockhart PJ, Bryant D. Species delimitation and phylogeny of a New Zealand plant species radiation. BMC Evol Biol. 2009; 9: 111 10.1186/1471-2148-9-111 PubMed DOI PMC
Duminil J, Heuertz M, Doucet JL, Bourland N, Cruaud C, Gavory F, et al. CpDNA-based species indentification and phylogeography: application to African tropical tree species. Mol Ecol. 2010; 19: 5469–5483. 10.1111/j.1365-294X.2010.04917.x PubMed DOI
Ruiz-Sanchez E, Sosa V. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data. Mol Phylogenet Evol. 2010; 54: 344–356. 10.1016/j.ympev.2009.10.035 PubMed DOI
Su X, Wu GL, Li LL, Liu JQ. Species delimitation in plants using the Qinghai—Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Annals Bot. 2015; 116: 35–48. PubMed PMC
Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol. 2011; 58: 218–231. 10.1016/j.ympev.2010.11.030 PubMed DOI
Novis PM. Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia. 2006; 45: 293–301.
Škaloud P, Lukešová A, Malavasi V, Ryšánek D, Hrčková K, Rindi F. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta). Plant Ecol Evol. 2014; 147: 333–345.
Ryšánek D, Holzinger A, Škaloud P. Influence of substrate and pH on the diversity of aeroterrestrial alga Klebsormidium (Klebsormidiales, Streptohyta): A potentially important factor for sympatric speciation. Phycologia. 2016; in press. PubMed PMC
Mikhailyuk T, Glaser K, Holzinger A, Karsten U. Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). J Phycol. 2015; 51: 750–767. PubMed PMC
Peksa O, Škaloud P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol Ecol. 2011; 20: 3936–3948. 10.1111/j.1365-294X.2011.05168.x PubMed DOI
Rindi F, McIvor L, Guiry MD. The Prasiolales (Chlorophyta) of Atlantic Europe: an assessment based on morphological, molecular, and ecological data, including the characterization of Rosenvingiella radicans (Kützing) comb. nov. J Phycol. 2004; 40: 977–997.
Rindi F, Guiry MD. Diversity, life history and ecology of Trentepohlia and Printzina in urban habitats in western Ireland. J Phycol. 2002; 38: 39–54.
Pollio A, Cennamo P, Ciniglia C, De Stefano M, Pinto G, Huss V. Chlamydomonas pitschmannii Ettl, a little known species from thermoacidic environments. Protist. 2005; 156: 287–302. PubMed
Lewis L, Lewis P. Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst Biol. 2005; 54: 936–947. PubMed
Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae
Alcobiosis, an algal-fungal association on the threshold of lichenisation
Coccomyxa: a dominant planktic alga in two acid lakes of different origin