Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
38789482
PubMed Central
PMC11126685
DOI
10.1038/s41467-024-48787-z
PII: 10.1038/s41467-024-48787-z
Knihovny.cz E-resources
- MeSH
- Biological Evolution MeSH
- Chlorophyta * genetics MeSH
- Phylogeny * MeSH
- Genomics MeSH
- Glycoside Hydrolases genetics metabolism MeSH
- Lichens * genetics microbiology MeSH
- Evolution, Molecular MeSH
- Gene Transfer, Horizontal MeSH
- Symbiosis * genetics MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycoside Hydrolases MeSH
Mutualistic symbioses have contributed to major transitions in the evolution of life. Here, we investigate the evolutionary history and the molecular innovations at the origin of lichens, which are a symbiosis established between fungi and green algae or cyanobacteria. We de novo sequence the genomes or transcriptomes of 12 lichen algal symbiont (LAS) and closely related non-symbiotic algae (NSA) to improve the genomic coverage of Chlorophyte algae. We then perform ancestral state reconstruction and comparative phylogenomics. We identify at least three independent gains of the ability to engage in the lichen symbiosis, one in Trebouxiophyceae and two in Ulvophyceae, confirming the convergent evolution of the lichen symbioses. A carbohydrate-active enzyme from the glycoside hydrolase 8 (GH8) family was identified as a top candidate for the molecular-mechanism underlying lichen symbiosis in Trebouxiophyceae. This GH8 was acquired in lichenizing Trebouxiophyceae by horizontal gene transfer, concomitantly with the ability to associate with lichens fungal symbionts (LFS) and is able to degrade polysaccharides found in the cell wall of LFS. These findings indicate that a combination of gene family expansion and horizontal gene transfer provided the basis for lichenization to evolve in chlorophyte algae.
Department of Biology University of Padova Padua Italy
Department of Insect Symbiosis Max Planck Institute for Chemical Ecology 07745 Jena Germany
INRAE Aix Marseille Université 3PE Platform 13009 Marseille France
See more in PubMed
Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. Symbiotic options for the conquest of land. Trends Ecol. Evolut. 2015;30:477–486. doi: 10.1016/j.tree.2015.05.007. PubMed DOI
Rich MK, et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science. 2021;372:864–868. doi: 10.1126/science.abg0929. PubMed DOI
Rensing SA. Great moments in evolution: The conquest of land by plants. Curr. Opin. Plant Biol. 2018;42:49–54. doi: 10.1016/j.pbi.2018.02.006. PubMed DOI
Puginier C, Keller J, Delaux P-M. Plant–microbe interactions that have impacted plant terrestrializations. Plant Physiol. 2022;190:72–84. doi: 10.1093/plphys/kiac258. PubMed DOI PMC
Nash, T. H. Lichen Biology. (Cambridge University Press, Cambridge, 2008).
Grimm M, et al. The Lichens’ Microbiota, Still a Mystery? Front. Microbiol. 2021;12:623839. doi: 10.3389/fmicb.2021.623839. PubMed DOI PMC
Spribille T, Resl P, Stanton DE, Tagirdzhanova G. Evolutionary biology of lichen symbioses. N. Phytologist. 2022;234:1566–1582. doi: 10.1111/nph.18048. PubMed DOI
Spribille T, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353:488–492. doi: 10.1126/science.aaf8287. PubMed DOI PMC
Hawksworth DL, Grube M. Lichens redefined as complex ecosystems. N. Phytologist. 2020;227:1281–1283. doi: 10.1111/nph.16630. PubMed DOI PMC
Tagirdzhanova, G. et al. Evidence for a core set of microbial lichen symbionts from a global survey of metagenomes. http://biorxiv.org/lookup/doi/10.1101/2023.02.02.524463 (2023) DOI
Pirozynski KA, Malloch DW. The origin of land plants: A matter of mycotrophism. Biosystems. 1975;6:153–164. doi: 10.1016/0303-2647(75)90023-4. PubMed DOI
Delaux P-M, et al. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 2014;10:e1004487. doi: 10.1371/journal.pgen.1004487. PubMed DOI PMC
Griesmann M, et al. Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science. 2018;361:eaat1743. doi: 10.1126/science.aat1743. PubMed DOI
van Velzen, R. et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl. Acad. Sci. USA. 115, 49–57 (2018). PubMed PMC
Mycorrhizal Genomics Initiative Consortium. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI
Kiss E, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat. Commun. 2019;10:4080. doi: 10.1038/s41467-019-12085-w. PubMed DOI PMC
Mesny F, et al. Genetic determinants of endophytism in the Arabidopsis root mycobiome. Nat. Commun. 2021;12:7227. doi: 10.1038/s41467-021-27479-y. PubMed DOI PMC
Gargas A, DePriest PT, Grube M, Tehler A. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. Science. 1995;268:1492–1495. doi: 10.1126/science.7770775. PubMed DOI
Lutzoni F, Pagel M, Reeb V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature. 2001;411:937–940. doi: 10.1038/35082053. PubMed DOI
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens. Proc. Natl Acad. Sci. Usa. 2020;117:21495–21503. doi: 10.1073/pnas.2001913117. PubMed DOI PMC
Sanders WB, Masumoto H. Lichen algae: the photosynthetic partners in lichen symbioses. Lichenologist. 2021;53:347–393. doi: 10.1017/S0024282921000335. DOI
Radhakrishnan GV, et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants. 2020;6:280–289. doi: 10.1038/s41477-020-0613-7. PubMed DOI
Lutzoni F, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 2018;9:5451. doi: 10.1038/s41467-018-07849-9. PubMed DOI PMC
Armaleo D, et al. The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics. 2019;20:605. doi: 10.1186/s12864-019-5629-x. PubMed DOI PMC
Kono M, Kon Y, Ohmura Y, Satta Y, Terai Y. In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics. 2020;21:671. doi: 10.1186/s12864-020-07086-9. PubMed DOI PMC
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: From metabolite release to symbiotic interplay. N. Phytologist. 2023;238:1362–1378. doi: 10.1111/nph.18780. PubMed DOI PMC
Resl P, et al. Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts. Nat. Commun. 2022;13:2634. doi: 10.1038/s41467-022-30218-6. PubMed DOI PMC
Wang Y, et al. Regulation of symbiotic interactions and primitive lichen differentiation by UMP1 MAP kinase in Umbilicaria muhlenbergii. Nat. Commun. 2023;14:6972. doi: 10.1038/s41467-023-42675-8. PubMed DOI PMC
Ran L, et al. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE. 2010;5:e11486. doi: 10.1371/journal.pone.0011486. PubMed DOI PMC
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2012;10:13–26. doi: 10.1038/nrmicro2670. PubMed DOI
Nechitaylo TY, et al. Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc. Natl. Acad. Sci. USA. 2021;118:e2023047118. doi: 10.1073/pnas.2023047118. PubMed DOI PMC
Noh S. Linear paths to genome reduction in a defensive symbiont. Proc. Natl. Acad. Sci. USA. 2021;118:e2106280118. doi: 10.1073/pnas.2106280118. PubMed DOI PMC
Soltis DE, et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA. 1995;92:2647–2651. doi: 10.1073/pnas.92.7.2647. PubMed DOI PMC
Van Velzen R, Doyle JJ, Geurts R. A resurrected scenario: Single gain and massive loss of nitrogen-fixing nodulation. Trends Plant Sci. 2019;24:49–57. doi: 10.1016/j.tplants.2018.10.005. PubMed DOI
Li L, et al. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat. Ecol. Evol. 2020;4:1220–1231. doi: 10.1038/s41559-020-1221-7. PubMed DOI PMC
Thüs H, et al. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota) Eur. J. Phycol. 2011;46:399–415. doi: 10.1080/09670262.2011.629788. DOI
Nyati S, Beck A, Honegger R. Fine structure and phylogeny of green algal photobionts in the microfilamentous genus Psoroglaena (Verrucariaceae, Lichen‐Forming Ascomycetes) Plant Biol. 2007;9:390–399. doi: 10.1055/s-2006-924654. PubMed DOI
Zahradníková M, Andersen HL, Tønsberg T, Beck A. Molecular evidence of apatococcus, including A. fuscideae sp. nov., as Photobiont in the Genus Fuscidea. Protist. 2017;168:425–438. doi: 10.1016/j.protis.2017.06.002. PubMed DOI
Malavasi V, et al. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta) PLoS ONE. 2016;11:e0151137. doi: 10.1371/journal.pone.0151137. PubMed DOI PMC
Darienko T, Gustavs L, Pröschold T. Species concept and nomenclatural changes within the genera Elliptochloris and Pseudochlorella (Trebouxiophyceae) based on an integrative approach. J. Phycol. 2016;52:1125–1145. doi: 10.1111/jpy.12481. PubMed DOI
Darienko, T. & Pröschold, T. Towarda monograph of non-marine Ulvophyceae using an integrative approach (Molecularphylogeny and systematics of terrestrial Ulvophyceae II. Phytotaxa 1, (2017).
Libourel C, et al. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. Nat. Plants. 2023;9:1067–1080. doi: 10.1038/s41477-023-01441-w. PubMed DOI PMC
Wickell DA, Li F. On the evolutionary significance of horizontal gene transfers in plants. N. Phytol. 2020;225:113–117. doi: 10.1111/nph.16022. PubMed DOI
Cheng S, et al. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell. 2019;179:1057–1067.e14. doi: 10.1016/j.cell.2019.10.019. PubMed DOI
Ma J, et al. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant. 2022;15:857–871. doi: 10.1016/j.molp.2022.02.001. PubMed DOI
Drula E, et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 2022;50:D571–D577. doi: 10.1093/nar/gkab1045. PubMed DOI PMC
Perlin AS, Suzuki S. The structure of lichenin: Selective enzymolysis studies. Can. J. Chem. 1962;40:50–56. doi: 10.1139/v62-009. DOI
Adachi W, et al. Crystal structure of family GH-8 Chitosanase with Subclass II Specificity from Bacillus sp. K17. J. Mol. Biol. 2004;343:785–795. doi: 10.1016/j.jmb.2004.08.028. PubMed DOI
Jumper J, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Lafond M, et al. The quaternary structure of a glycoside hydrolase dictates specificity toward β-Glucans. J. Biol. Chem. 2016;291:7183–7194. doi: 10.1074/jbc.M115.695999. PubMed DOI PMC
Hernández Estévez I, Rodríguez Hernández M. Plant glutathione S-transferases: An overview. Plant Gene. 2020;23:100233. doi: 10.1016/j.plgene.2020.100233. DOI
Barrett RDH, et al. Linking a mutation to survival in wild mice. Science. 2019;363:499–504. doi: 10.1126/science.aav3824. PubMed DOI
Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Meeßen J, Eppenstein S, Ott S. Recognition mechanisms during the pre-contact state of lichens: II. Influence of algal exudates and ribitol on the response of the mycobiont of Fulgensia bracteata. Symbiosis. 2013;59:131–143. doi: 10.1007/s13199-012-0219-6. DOI
Palmqvist K. Carbon economy in lichens. N. Phytologist. 2000;148:11–36. doi: 10.1046/j.1469-8137.2000.00732.x. PubMed DOI
Ahmadjian V. The Lichen symbiosis. Nord. J. Bot. 1994;14:588–588.
Kranner I, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl Acad. Sci. Usa. 2005;102:3141–3146. doi: 10.1073/pnas.0407716102. PubMed DOI PMC
Li F-W, et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat. Plants. 2018;4:460–472. doi: 10.1038/s41477-018-0188-8. PubMed DOI PMC
Liu Y, et al. The Cycas genome and the early evolution of seed plants. Nat. Plants. 2022;8:389–401. doi: 10.1038/s41477-022-01129-7. PubMed DOI PMC
Wang B, et al. Co-opted genes of algal origin protect C. elegans against cyanogenic toxins. Curr. Biol. 2022;32:4941–4948.e3. doi: 10.1016/j.cub.2022.09.041. PubMed DOI PMC
Beck A, Divakar PK, Zhang N, Molina MC, Struwe L. Evidence of ancient horizontal gene transfer between fungi and the terrestrial alga Trebouxia. Org. Divers Evol. 2015;15:235–248. doi: 10.1007/s13127-014-0199-x. DOI
Kirsch R, et al. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc. Natl Acad. Sci. Usa. 2022;119:e2205857119. doi: 10.1073/pnas.2205857119. PubMed DOI PMC
Haegeman A, Jones JT, Danchin EGJ. Horizontal gene transfer in nematodes: A catalyst for plant parasitism? MPMI. 2011;24:879–887. doi: 10.1094/MPMI-03-11-0055. PubMed DOI
Honegger R, Haisch A. Immunocytochemical location of the (1→3) (1→4)-β-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (Icelandic moss) 1. N. Phytologist. 2001;150:739–746. doi: 10.1046/j.1469-8137.2001.00122.x. DOI
Gong Y, Lebreton A, Zhang F, Martin F. Role of carbohydrate-active enzymes in mycorrhizal symbioses. Essays Biochem. 2023;67:471–478. doi: 10.1042/EBC20220127. PubMed DOI
Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc. Natl Acad. Sci. Usa. 2019;116:19675–19684. doi: 10.1073/pnas.1910793116. PubMed DOI PMC
Tapper R. Glucose uptake by Trebouxia and associated fungal symbiont in the lichen symbiosis. FEMS Microbiol. Lett. 1981;10:103–106. doi: 10.1111/j.1574-6968.1981.tb06216.x. DOI
Ahmadjian, V. Trebouxia: Reflections on a Perplexing and Controversial Lichen Photobiont. in Symbiosis: mechanisms and model systems (ed. Seckbach, J.) 375–383 (Kluwer Academic Publishers, Dordrecht; Boston, 2002).
Dal Grande F, et al. Environment and host identity structure communities of green algal symbionts in lichens. N. Phytol. 2018;217:277–289. doi: 10.1111/nph.14770. PubMed DOI
Beck, A. & Hans-Ulrich, K. Analysis of the photobiont population in lichens using a single-cell manipulator. Symbiosis31, 57–67 (2001).
Ahmadjian V. Lichen synthesis. Österreichische Botanische Z. 1969;116:306–311. doi: 10.1007/BF01379630. DOI
Bethune K, et al. Long‐fragment targeted capture for long‐read sequencing of plastomes. Appl. Plant Sci. 2019;7:e1243. doi: 10.1002/aps3.1243. PubMed DOI PMC
Mayjonade B, et al. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. BioTechniques. 2016;61:203–205. doi: 10.2144/000114460. PubMed DOI
Merges D, Dal Grande F, Greve C, Otte J, Schmitt I. Virus diversity in metagenomes of a lichen symbiosis (Umbilicaria phaea): complete viral genomes, putative hosts and elevational distributions. Environ. Microbiol. 2021;23:6637–6650. doi: 10.1111/1462-2920.15802. PubMed DOI
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinforma. 2014;15:211. doi: 10.1186/1471-2105-15-211. PubMed DOI PMC
Huson DH, et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct. 2018;13:6. doi: 10.1186/s13062-018-0208-7. PubMed DOI PMC
Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinforma. 2015;16:227. doi: 10.1186/s12859-015-0654-5. PubMed DOI PMC
Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinforma. 2021;3:lqaa108. doi: 10.1093/nargab/lqaa108. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. doi: 10.1038/s41587-019-0201-4. PubMed DOI PMC
Danecek P, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Cabau C, et al. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ. 2017;5:e2988. doi: 10.7717/peerj.2988. PubMed DOI PMC
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086–1092. doi: 10.1093/bioinformatics/bts094. PubMed DOI PMC
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–763. doi: 10.1093/bioinformatics/14.9.755. PubMed DOI
Mistry J, et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021;49:D412–D419. doi: 10.1093/nar/gkaa913. PubMed DOI PMC
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods. 2021;18:366–368. doi: 10.1038/s41592-021-01101-x. PubMed DOI PMC
Revell LJ. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things) PeerJ. 2024;12:e16505. doi: 10.7717/peerj.16505. PubMed DOI PMC
Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
R Core Team. R: A language and environment for statistical computing. (2013).
Ou S, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20:275. doi: 10.1186/s13059-019-1905-y. PubMed DOI PMC
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–W268. doi: 10.1093/nar/gkm286. PubMed DOI PMC
Ou S, Jiang N. LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410–1422. doi: 10.1104/pp.17.01310. PubMed DOI PMC
Su W, Gu X, Peterson T. TIR-learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol. Plant. 2019;12:447–460. doi: 10.1016/j.molp.2019.02.008. PubMed DOI
Xiong W, He L, Lai J, Dooner HK, Du C. HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc. Natl Acad. Sci. Usa. 2014;111:10263–10268. doi: 10.1073/pnas.1410068111. PubMed DOI PMC
Shi J, Liang C. Generic repeat finder: A high-sensitivity tool for genome-wide de novo repeat detection. Plant Physiol. 2019;180:1803–1815. doi: 10.1104/pp.19.00386. PubMed DOI PMC
Flynn JM, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA. 2020;117:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC
Zhang, R.-G., Wang, Z.-X., Ou, S. & Li, G.-Y. TEsorter: Lineage-Level Classification of Transposable Elements Using Conserved Protein Domains. http://biorxiv.org/lookup/doi/10.1101/800177 (2019) DOI
Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2013).
Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Minh BQ, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evolut. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evolut. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Ewels PA, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020;38:276–278. doi: 10.1038/s41587-020-0439-x. PubMed DOI
Di Tommaso P, et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 2017;35:316–319. doi: 10.1038/nbt.3820. PubMed DOI
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Kovaka S, et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. doi: 10.1186/s13059-019-1910-1. PubMed DOI PMC
Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: Enabling browsing of large distributed datasets. Bioinformatics. 2010;26:2204–2207. doi: 10.1093/bioinformatics/btq351. PubMed DOI PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25. PubMed DOI PMC
Anand L, Rodriguez Lopez CM. ChromoMap: An R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinforma. 2022;23:33. doi: 10.1186/s12859-021-04556-z. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evolut. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinforma. 2010;11:431. doi: 10.1186/1471-2105-11-431. PubMed DOI PMC
Barrett K, Lange L. Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP) Biotechnol. Biofuels. 2019;12:102. doi: 10.1186/s13068-019-1436-5. PubMed DOI PMC
Haon M, et al. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris. Front. Microbiol. 2015;6:1002. doi: 10.3389/fmicb.2015.01002. PubMed DOI PMC
Bennati-Granier C, et al. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol. Biofuels. 2015;8:90. doi: 10.1186/s13068-015-0274-3. PubMed DOI PMC