Individualized rTMS neuronavigated according to regional brain metabolism ((18)FGD PET) has better treatment effects on auditory hallucinations than standard positioning of rTMS: a double-blind, sham-controlled study
Language English Country Germany Media print-electronic
Document type Journal Article, Randomized Controlled Trial, Research Support, Non-U.S. Gov't
- MeSH
- Analysis of Variance MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Fluorodeoxyglucose F18 * MeSH
- Hallucinations pathology therapy MeSH
- Cross-Over Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Cerebral Cortex diagnostic imaging MeSH
- Neuronavigation MeSH
- Positron-Emission Tomography MeSH
- Psychiatric Status Rating Scales MeSH
- Psychometrics MeSH
- Transcranial Magnetic Stimulation methods MeSH
- Imaging, Three-Dimensional MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Fluorodeoxyglucose F18 * MeSH
Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) of the left temporo-parietal cortex (LTPC) has been proposed as a useful therapeutic method for auditory hallucinations (AHs). Stereotactic neuronavigation enables the magnetic coil to be targeted according to the individual parameters obtained from neuroimaging. Individualized rTMS neuronavigated according to 18-fluorodeoxyglucose positron emission tomography ((18)FDG PET) allows us to focus the coil explicitly on a given area with detected maxima of specific abnormalities, thus presuming a higher therapeutic effect of the method. The objective of this study is to test clinical efficacy of neuronavigated LF-rTMS administered according to the local maxima of (18)FDG PET uptake of LTPC and to compare it with treatment effects of standard and sham rTMS. In a double-blind, sham-controlled design, patients with AHs underwent a 10-day series of LF-rTMS using (1) (18)FDG PET-guided "neuronavigation," (2) "standard" anatomically guided positioning, and (3) sham coil. The effect of different rTMS conditions was assessed by the Auditory Hallucinations Rating Scale (AHRS) and the Positive and Negative Syndrome Scale (PANSS). Fifteen patients were randomized to a treatment sequence and ten of them completed all three treatment conditions. The intention-to-treat analysis of AHRS score change revealed superiority of the (18)FDG PET-guided rTMS over both the standard and the sham rTMS. The analyses of the PANSS scores failed to detect significant difference among the treatments. Our data showed acute efficacy of (18)FDG PET-guided rTMS in the treatment of AHs. Neuronavigated rTMS was found to be more effective than standard, anatomically guided rTMS.
See more in PubMed
Neurosci Lett. 2005 Jul 22-29;383(1-2):54-7 PubMed
Neuroimage. 1999 Jan;9(1):63-80 PubMed
Brain Topogr. 2003 Winter;16(2):95-9 PubMed
J Psychiatry Neurosci. 2002 Mar;27(2):110-5 PubMed
Biol Psychiatry. 2005 Jan 15;57(2):188-91 PubMed
Arch Gen Psychiatry. 2000 Nov;57(11):1033-8 PubMed
J Clin Psychopharmacol. 2005 Aug;25(4):358-62 PubMed
Nature. 1995 Nov 9;378(6553):176-9 PubMed
Scand J Psychol. 2001 Jul;42(3):239-50 PubMed
J Clin Psychiatry. 2007 Oct;68(10):1528-32 PubMed
Psychiatry Res. 2001 Nov 30;108(2):123-31 PubMed
Neuroimage. 2003 Nov;20(3):1894-8 PubMed
Psychiatry Res. 2007 May 15;155(1):83-8 PubMed
Neurology. 2000 Feb 22;54(4):956-63 PubMed
J Clin Psychiatry. 2003 Jun;64(6):663-7 PubMed
Electroencephalogr Clin Neurophysiol. 1994 Aug;91(2):79-92 PubMed
Schizophr Res. 2007 Jul;93(1-3):406-8 PubMed
J Neuropsychiatry Clin Neurosci. 2002 Winter;14(1):77-9 PubMed
Psychiatry Res. 2003 Apr 1;122(3):139-52 PubMed
Br J Psychiatry. 1990 Oct;157:562-70 PubMed
Eur Arch Psychiatry Clin Neurosci. 2011 Nov;261 Suppl 2:S166-71 PubMed
Neuropsychobiology. 2007;55(3-4):132-42 PubMed
Epilepsia. 2001 Dec;42(12):1515-22 PubMed
Eur Arch Psychiatry Clin Neurosci. 2010 Feb;260(1):69-76 PubMed
Schizophr Res. 1993 Dec;11(1):47-54 PubMed
Psychiatry Res. 2000 Nov 20;100(1):13-20 PubMed
Neuroreport. 2004 Jul 19;15(10):1669-73 PubMed
Neurology. 1997 May;48(5):1398-403 PubMed
J Neurosci. 1997 May 1;17(9):3178-84 PubMed
Am J Psychiatry. 2001 Jan;158(1):11-20 PubMed
Schizophr Bull. 1987;13(2):261-76 PubMed
Neuroreport. 2003 May 23;14(7):977-80 PubMed
Schizophr Res. 2009 Aug;113(1):77-83 PubMed
Biol Psychiatry. 2010 Feb 1;67(3):255-62 PubMed
J ECT. 2002 Dec;18(4):170-81 PubMed
Schizophr Res. 2006 Jan 1;81(1):41-5 PubMed
Laryngoscope. 2011 Apr;121(4):815-22 PubMed
Lancet. 2000 Mar 25;355(9209):1073-5 PubMed
Neuropsychologia. 1999 Feb;37(2):207-17 PubMed
Arch Gen Psychiatry. 2003 Jan;60(1):49-56 PubMed
Neurophysiol Clin. 2010 Mar;40(1):45-58 PubMed
Biol Psychiatry. 2005 Jul 15;58(2):97-104 PubMed
Brain Topogr. 2005 Summer;17(4):253-9 PubMed
J Psychiatr Res. 2003 Jul-Aug;37(4):267-75 PubMed
Neuro Endocrinol Lett. 2007 Feb;28(1):53-9 PubMed
Neuropsychobiology. 2006;54(2):87-99 PubMed
Neurosci Lett. 2005 Mar 16;376(3):177-81 PubMed
Neuron. 1999 Mar;22(3):615-21 PubMed
Schizophr Res. 2006 May;84(1):185-6 PubMed
Biol Psychiatry. 1999 Jul 1;46(1):130-2 PubMed
Biol Psychiatry. 2001 Jul 1;50(1):58-61 PubMed
Biol Psychiatry. 2011 Mar 1;69(5):450-6 PubMed
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1956-60 PubMed
Am J Psychiatry. 1995 Nov;152(11):1576-85 PubMed
Lancet. 1993 Sep 18;342(8873):703-6 PubMed
J Clin Psychiatry. 2007 Mar;68(3):416-21 PubMed
Towards causal mechanisms of consciousness through focused transcranial brain stimulation