Analyzing the effect of ion binding to the membrane-surface on regulating the light-induced transthylakoid electric potential (ΔΨm)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35968094
PubMed Central
PMC9366520
DOI
10.3389/fpls.2022.945675
Knihovny.cz E-zdroje
- Klíčová slova
- Donnan potential, diffusion potential, ions, mathematical model, membrane potential, thylakoid membrane,
- Publikační typ
- časopisecké články MeSH
The transthylakoid membrane potential (ΔΨm) is essential because it can drive the ATP synthesis through the CF0-CF1 type of ATP-synthase in chloroplasts as an energetic equivalent similar to ΔpH. In addition, a high fraction of proton motive force (PMF) stored as the ΔΨm component is physiologically important in the acclimation of photosynthesis to environmental stresses. It has been shown that ΔΨm is the sum of the Donnan potential difference (ΔΨdn) and the diffusion potential difference (ΔΨd). Specifically, ΔΨdn, ΔΨd, and ΔΨm are strongly associated with the ionic activities near the membrane surface, particularly, the extent of ion binding to the charged/neutral sites adjacent to the membrane surface. However, an in-depth analysis of the effect of altered cationic binding to the membrane surface on adjusting the transthylakoid electric potentials (ΔΨdn, ΔΨd, and ΔΨm) is still missing. This lack of a mechanistic understanding is due to the experimental difficulty of closely observing cations binding to the membrane surface in vivo. In this work, a computer model was proposed to investigate the transthylakoid electric phenomena in the chloroplast focusing on the interaction between cations and the negative charges close to the membrane surface. By employing the model, we simulated the membrane potential and consequently, the measured ECS traces, proxing the ΔΨm, were well described by the computing results on continuous illumination followed by a dark-adapted period. Moreover, the computing data clarified the components of transthylakoid membrane potential, unraveled the functional consequences of altered cationic attachment to the membrane surface on adjusting the transthylakoid electric potential, and further revealed the key role played by Donnan potential in regulating the energization of the thylakoid membrane. The current model for calculating electric potentials can function as a preliminary network for the further development into a more detailed theoretical model by which multiple important variables involved in photosynthesis can be explored.
Department of Biophysics Faculty of Science Palacký University Olomouc Czechia
School of Biological Science and Agriculture Qiannan Normal University for Nationalities Duyun China
Zobrazit více v PubMed
Armbruster U., Leonelli L., Correa Galvis V., Strand D., Quinn E. H., Jonikas M. C., et al. (2016). Regulation and Levels of the Thylakoid K+/H+ Antiporter KEA3 Shape the dynamic response of photosynthesis in fluctuating light. Plant Cell Physiol. 57 1557–1567. 10.1093/pcp/pcw085 PubMed DOI PMC
Barber J. (1980b). Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta 594 253–308. PubMed
Barber J. (1980a). An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett. 118 1–10.
Barber J. (1982). Influence of surface charges on thylakoid structure and function. Annu. Rev. Plant Physiol. 33 261–295.
Barber J., Mills J., Love A. (1977). Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett. 74, 174–181. PubMed
Basso L., Yamori W., Szabo I., Shikanai T. (2020). Collaboration between NDH and KEA3 allows maximally efficient photosynthesis after a long dark adaptation. Plant Physiol. 184 2078–2090. 10.1104/pp.20.01069 PubMed DOI PMC
Bulychev A. A. (1984). Different kinetics of membrane potential formation in dark-adapted and preilluminated chloroplasts. Biochim. Biophys. Acta 766 647–652. 10.1007/s10863-012-9476-6 PubMed DOI
Bulychev A. A., Vredenberg W. J. (1999). Light-triggered electrical events in the thylakoid membrane of plant chloroplasts. Physiol. Plant. 105 577–584.
Correa Galvis V., Strand D. D., Messer M., Thiele W., Bethmann S., Hubner D., et al. (2020). H(+) Transport by K(+) EXCHANGE ANTIPORTER3 Promotes Photosynthesis and Growth in Chloroplast ATP Synthase Mutants. Plant Physiol. 182 2126–2142. 10.1104/pp.19.01561 PubMed DOI PMC
Cruz J. A., Kanazawa A., Treff N., Kramer D. M. (2005). Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth. Res. 85 221–233. 10.1007/s11120-005-4731-x PubMed DOI
Cruz J. A., Sacksteder C. A., Kanazawa A., Kramer D. M. (2001). Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Delta psi and Delta pH by ionic strength. Biochemistry 40 1226–1237. 10.1021/bi0018741 PubMed DOI
Davis G. A., Kanazawa A., Schottler M. A., Kohzuma K., Froehlich J. E., Rutherford A. W., et al. (2016). Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. eLife 5:e16921. 10.7554/eLife.16921 PubMed DOI PMC
Davis G. A., Rutherford A. W., Kramer D. M. (2017). Hacking the thylakoid proton motive force for improved photosynthesis: modulating ion flux rates that control proton motive force partitioning into Deltapsi and DeltapH. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160381. 10.1098/rstb.2016.0381 PubMed DOI PMC
Enz C., Steinkamp T., Wagner R. (1993). Ion channels in the thylakoid membrane (A patch-clamp study). Biochim. Biophys. Acta 1143, 67–76. 10.1016/0005-2728(93)90217-4 DOI
Gillespie D., Eisenberg R. S. (2001). Modified Donnan potentials for ion transport through biological ion channels. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 63:061902. PubMed
Herdean A., Teardo E., Nilsson A. K., Pfeil B. E., Johansson O. N., Unnep R., et al. (2016b). A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat. Commun. 7:11654. 10.1038/ncomms11654 PubMed DOI PMC
Herdean A., Nziengui H., Zsiros O., Solymosi K., Garab G., Lundin B., et al. (2016a). The Arabidopsis Thylakoid Chloride Channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport. Front. Plant Sci. 7:115. 10.3389/fpls.2016.00115 PubMed DOI PMC
Johnson M. P., Ruban A. V. (2014). Rethinking the existence of a steady-state Deltapsi component of the proton motive force across plant thylakoid membranes. Photosynth. Res. 119 233–242. 10.1007/s11120-013-9817-2 PubMed DOI
Joliot P., Joliot A. (1989). Characterization of linear and quadratic electrochromic probes in Chlorella sorokiniana and Chlamydomonas reinhardtii. Biochim. Biophys. Acta 975 355–360.
Kaña R. Govindjee. (2016). Role of ions in the regulation of light-harvesting. Front. Plant Sci. 7:1849. 10.3389/fpls.2016.01849 PubMed DOI PMC
Kanazawa A., Ostendorf E., Kohzuma K., Hoh D., Strand D. D., Sato-Cruz M., et al. (2017). Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for Photosystem I and Photosystem II Photoprotection. Front. Plant Sci. 8:719. 10.3389/fpls.2017.00719 PubMed DOI PMC
Kinraide T. B., Yermiyahu U., Rytwo G. (1998). Computation of surface electrical potentials of plant cell membranes. Correspondence To published zeta potentials from diverse plant sources. Plant Physiol. 118 505–512. 10.1104/pp.118.2.505 PubMed DOI PMC
Klughammer C., Siebke K., Schreiber U. (2013). Continuous ECS-indicated recording of the proton-motive charge flux in leaves. Photosynth. Res. 117 471–487. 10.1007/s11120-013-9884-4 PubMed DOI PMC
Kramer D. M., Sacksteder C. A. (1998). A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth. Res. 56 103–112. PubMed
Kramer D. M., Sacksteder C. A., Cruz J. A. (1999). How acidic is the lumen? Photosynth. Res. 60 151–163.
Krause G.H. (1977). Light-induced movement of magnesium ions in intact chloroplasts. Spectroscopic determination with Eriochrome Blue SE. Biochim. Biophys. Acta. 460, 500–510. PubMed
Kunz H. H., Gierth M., Herdean A., Satoh-Cruz M., Kramer D. M., Spetea C., et al. (2014). Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 111 7480–7485. 10.1073/pnas.1323899111 PubMed DOI PMC
Levine S., Levine M., Sharp K. A., Brooks D. E. (1983). Theory of the electrokinetic behavior of human erythrocytes. Biophys. J. 42 127–135. 10.1016/S0006-3495(83)84378-1 PubMed DOI PMC
Li M., Svoboda V., Davis G., Kramer D., Kunz H. H., Kirchhoff H. (2021). Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nat. Plants 7 979–988. 10.1038/s41477-021-00947-5 PubMed DOI
Li Z., Wakao S., Fischer B. B., Niyogi K. K. (2009). Sensing and responding to excess light. Annu. Rev. Plant Biol. 60 239–260. PubMed
Lyu H., Lazar D. (2017a). Modeling the light-induced electric potential difference (DeltaPsi), the pH difference (DeltapH) and the proton motive force across the thylakoid membrane in C3 leaves. J. Theor. Biol. 413 11–23. 10.1016/j.jtbi.2016.10.017 PubMed DOI
Lyu H., Lazar D. (2017b). Modeling the light-induced electric potential difference DeltaPsi across the thylakoid membrane based on the transition state rate theory. Biochim. Biophys. Acta Bioenerg. 1858 239–248. 10.1016/j.bbabio.2016.12.009 PubMed DOI
Mitchell P. (1961). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochem. J. 79 1507–1538. PubMed
Mitchell P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41 445–502. PubMed
Mitchell P. (2011). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966. Biochim. Biophys. Acta 1807 1507–1538. PubMed
Nakatani H. Y., Barber J., Forrester J. A. (1978). Surface charges on chloroplast membranes as studied by particle electrophoresis. Biochim. Biophys. Acta Bioenerg. 504 215–225. 10.1016/0005-2728(78)90019-1 PubMed DOI
Ohshima H., Kondo T. (1987). Electrostatic repulsion of ion penetrable charged membranes: role of Donnan potential. J. Theor. Biol. 128 187–194. 10.1016/s0022-5193(87)80168-6 PubMed DOI
Ohshima H., Kondo T. (1988b). Membrane potential and Donnan potential. Biophys. Chem. 29 277–281. PubMed
Ohshima H., Kondo T. (1988a). Double-layer interaction regulated by the donnan potential. J. Colloid Interface Sci. 123 136–142. 10.1016/0301-4622(91)85031-k PubMed DOI
Ohshima H., Kondo T. (1990). Relationship among the surface potential, Donnan potential and charge density of ion-penetrable membranes. Biophys. Chem. 38 117–122. 10.1016/0301-4622(90)80046-a PubMed DOI
Ohshima H., Ohki S. (1985). Donnan potential and surface potential of a charged membrane. Biophys. J. 47 673–678. PubMed PMC
Pinnola A., Bassi R. (2018). Molecular mechanisms involved in plant photoprotection. Biochem. Soc. Trans. 46 467–482. PubMed
Portis A. R. (1981). Evidence of a low stromal Mg2+ concentration in intact chloroplasts in the dark: I. STUDIES WITH THE IONOPHORE A23187. Plant Physiol. 67, 985–989 PubMed PMC
Pottosin I., Schönknecht G. (1996). Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J. Membr. Biol. 152 223–233. 10.1007/s002329900100 PubMed DOI
Qasem N. A. A., Qureshi B. A., Zubair S. M. (2018). Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination 441 62–76.
Schönknecht G., Hedrich R., Junge W., Raschke K. (1988). A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336 589–592.
Siggel U. (1981a). 414 — Surface and/or Donnan potentials at the thylakoid membrane? Bioelectrochem. Bioenerg. 8 327–337.
Siggel U. (1981b). 415 - Surface and/or Donnan potentials at the thylakoid membrane? Bioelectrochem. Bioenerg. 8 339–346.
Siggel U. (1981c). 416 - Surface and/or Donnan potentials at the thylakoid membrane? Bioelectrochem. Bioenerg. 8 347–354.
Sperelakis N. (ed.) (2012). “Gibbs–Donnan Equilibrium Potentials,” in Cell Physiology Source Book, (San Diego, CA: Academic Press Inc; ), 147–151.
Tester M., Blatt M.R. (1989). Direct measurement of k channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol. 91, 249–252. PubMed PMC
Van Kooten O., Snel J. F., Vredenberg W. J. (1986). Photosynthetic free energy transduction related to the electric potential changes across the thylakoid membrane. Photosynth. Res. 9 211–227. 10.1007/BF00029745 PubMed DOI
Vredenberg W. J. (1981). P515: a monitor of photosynthetic energization in chloroplast membranes. Physiol. Plant. 53 598–602.
Vredenberg W. J. (1997). Electrogenesis in the photosynthetic membrane: fields, facts and features. Bioelectrochem. Bioenerg. 44 1–11.
Vredenberg W. J., Bulychev A. (2003). Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry 60 87–95. 10.1016/s1567-5394(03)00053-7 PubMed DOI
Wang C., Shikanai T. (2019). Modification of Activity of the Thylakoid H(+)/K(+) Antiporter KEA3 Disturbs pH-Dependent Regulation of Photosynthesis. Plant Physiol. 181 762–773. 10.1104/pp.19.00766 PubMed DOI PMC
Wang C., Yamamoto H., Narumiya F., Munekage Y. N., Finazzi G., Szabo I., et al. (2017). Fine-tuned regulation of the K(+) /H(+) antiporter KEA3 is required to optimize photosynthesis during induction. Plant J. 89 540–553. 10.1111/tpj.13405 PubMed DOI
Witt H. T. (1979). Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim. Biophys. Acta 505 355–427. 10.1016/0304-4173(79)90008-9 PubMed DOI
From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement
Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light