Standoff Distance in Ultrasonic Pulsating Water Jet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0490
Agentúra na Podporu Výskumu a Vývoja
VEGA 1/0096/18
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
33375500
PubMed Central
PMC7795501
DOI
10.3390/ma14010088
PII: ma14010088
Knihovny.cz E-zdroje
- Klíčová slova
- disintegration depth, pulsating water jet, stainless steel, traverse speed,
- Publikační typ
- časopisecké články MeSH
The water hammer effect is the basis of technologies which is artificially responsible for the decay of continuous jets. A recently developed technique enhances the pressure fluctuations using an acoustic chamber, leading to enhanced erosion effects for various water volume flow rates. The optimum standoff distance for an ultrasonic enhanced water jet is not appropriately estimated using an inclined trajectory. The objective of this study is to comprehend the true nature of the interaction of the standoff distance following the stair trajectory and traverse speed of the nozzle on the erosion depth. Additionally, it also critically compares the new method (staircase trajectory) that obeys the variation in frequency of the impingements for defined volume flow rates with the inclined trajectory. In this study, at constant pressure (p = 70 MPa), the role of impingement distribution with the variation of traverse speed (v = 5-35 mm/s) along the centerline of the footprint was investigated. The maximum erosion depth corresponding to each traverse speed is observed at approximately same standoff distance (65 ± 5 mm) and decreases with the increment in traverse speed (h= 1042 and 47 µm at v = 5 and 35 mm/s, respectively). The results are attributed to the variation in the number of impingements per unit length. The surface and morphology analysis of the cross-section using SEM manifested the presence of erosion characteristics (micro-cracks, cavities, voids, and upheaved surface). By varying the water cluster, different impingement densities can be achieved that are suitable for technological operations such as surface peening, material disintegration, or surface roughening.
Zobrazit více v PubMed
Fujisawa N., Takano S., Fujisawa K., Yamagata T. Experiments on liquid droplet impingement erosion on a rough surface. Wear. 2018;398–399:158–164. doi: 10.1016/j.wear.2017.12.003. DOI
Thomas G.P., Brunton J.H. Drop Impingement Erosion of Metals. Proc. R. Soc. A Math. Phys. Eng. Sci. 1970;314:549–565. doi: 10.1098/rspa.1970.0022. DOI
Luiset B., Sanchette F., Billard A., Schuster D. Mechanisms of stainless steels erosion by water droplets. Wear. 2013;303:459–464. doi: 10.1016/j.wear.2013.03.045. DOI
Finnie I. Some observations on the erosion of ductile metals. Wear. 1972;19:81–90. doi: 10.1016/0043-1648(72)90444-9. DOI
Foldyna J. Acoustic Waves-From Microdevices to Helioseismology. IntechOpen; London, UK: 2011. Use of Acoustic Waves for Pulsating Water Jet Generation.
Foldyna J., Sitek L., Ščučka J., Martinec P., Valíček J., Páleníková K. Effects of pulsating water jet impact on aluminum surface. J. Mater. Process. Technol. 2009;209:6174–6180. doi: 10.1016/j.jmatprotec.2009.06.004. DOI
Foldyna J., Klich J., Hlavacek P., Zelenak M., Scucka J. Erosion of Metals by Pulsating Water Jet. Teh. Vjesn. Gaz. 2012;19:381–386.
Lehocka D., Klich J., Foldyna J., Hloch S., Krolczyk J.B., Carach J., Krolczyk G.M. Copper alloys disintegration using pulsating water jet. Meas. J. Int. Meas. Confed. 2016;82:375–383. doi: 10.1016/j.measurement.2016.01.014. DOI
Lehocká D., Klichová D., Foldyna J., Hloch S., Hvizdoš P., Fides M., Botko F. Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass. Meas. J. Int. Meas. Confed. 2017;110:230–238. doi: 10.1016/j.measurement.2017.07.005. DOI
Lehocká D., Klich J., Botko F., Foldyna J., Hloch S., Kepič J., Kovaľ K., Krejči L., Storkan Z. Pulsating water jet erosion effect on a brass flat solid surface. Int. J. Adv. Manuf. Technol. 2018;97:1099–1112. doi: 10.1007/s00170-018-1882-4. DOI
Hloch S., Foldyna J., Hvizdos P., Monka P. Disintegration of High Fatigue G Bone Cement and Palacos R + G® By Pulsating Water Jet; Proceedings of the 14th International Scientific Conference on Production Engineering–CIM201; Zagreb, Croatia. 19–22 June 2013.
Hloch S., Foldyna J., Sitek L., Zeleňák M., Hlaváček P., Hvizdoš P., Kľoc J., Monka P., Monková K., Kozak D., et al. Disintegration of bone cement by continuous and pulsating water jet. Tech. Gaz. 2013;20:593–598.
Hloch S., Foldyna J., Pude F., Kľoc J., Zeleňák M., Hvizdoš P., Monka P., Smolko I., Ščučka J., Kozak D., et al. Experimental in-vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty. Teh. Vjesn. Tech. Gaz. 2015;22:1609–1615. doi: 10.17559/TV-20150822145550. DOI
Nag A., Hloch S., Dixit A.R., Pude F. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. Int. J. Adv. Manuf. Technol. 2020;110:829–840. doi: 10.1007/s00170-020-05892-9. DOI
Srivastava M., Hloch S., Tripathi R., Kozak D., Chattopadhyaya S., Dixit A.R., Foldyna J., Hvizdos P., Fides M., Adamcik P. Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Process. 2018;32:455–468. doi: 10.1016/j.jmapro.2018.03.016. DOI
Srivastava M., Hloch S., Gubeljak N., Milkovic M., Chattopadhyaya S., Klich J. Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces. Measurement. 2019;143:81–92. doi: 10.1016/j.measurement.2019.04.082. DOI
Srivastava M., Hloch S., Krejci L., Chattopadhyaya S., Dixit A.R., Foldyna J. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Measurement. 2018;127:453–462. doi: 10.1016/j.measurement.2018.06.012. DOI
Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J. Hydrodynamic ductile erosion of aluminum by a pulsed water jet moving in an inclined trajectory. Wear. 2019;428:178–192. doi: 10.1016/j.wear.2019.03.015. DOI
Nag A., Hloch S., Čuha D., Dixit A.R., Tozan H., Petrů J., Hromasová M., Müller M. Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J. Manuf. Process. 2019;47:347–356. doi: 10.1016/j.jmapro.2019.10.008. DOI
Tripathi R., Hloch S., Chattopadhyaya S., Klichová D., Ščučka J., Das A.K. Application of the pulsating and continous water jet for granite erosion. Int. J. Rock Mech. Min. Sci. 2020;126:104209. doi: 10.1016/j.ijrmms.2020.104209. DOI
Tripathi R., Hloch S., Chattopadhyaya S., Klichová D. Influence of frequency change during sandstone erosion by pulsed waterjet. Mater. Manuf. Process. 2019;35:187–194. doi: 10.1080/10426914.2019.1669800. DOI
Klich J., Klichova D., Foldyna V., Hlavacek P., Foldyna J. Influence of Variously Modified Surface of Aluminum Alloy on the Effect of Pulsating Water Jet. Strojniški Vestn. J. Mech. Eng. 2017;63:577–582. doi: 10.5545/sv-jme.2017.4356. DOI
Foldyna V., Foldyna J., Klichova D. Effects of water jets on CNTS/concrete composite. MM Sci. J. 2018;2018:2229–2233. doi: 10.17973/MMSJ.2018_03_201775. DOI
Hloch S., Srivastava M., Nag A., Muller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear. 2020;452:203278. doi: 10.1016/j.wear.2020.203278. DOI
Raj P., Hloch S., Tripathi R., Srivastava M., Nag A., Klichová D., Klich J., Hromasová M., Muller M., Miloslav L., et al. Investigation of sandstone erosion by continuous and pulsed water jets. J. Manuf. Process. 2019;42:121–130. doi: 10.1016/j.jmapro.2019.04.035. DOI
Kirols H.S., Kevorkov D., Uihlein A., Medraj M. The effect of initial surface roughness on water droplet erosion behaviour. Wear. 2015;342–343:198–209. doi: 10.1016/j.wear.2015.08.019. DOI
Comparison of Continuous and Pulsating Water Jet during Piercing of Ductile Material
Ultrasonic Pulsating Water Jet Peening: Influence of Pressure and Pattern Strategy