Comparison of Continuous and Pulsating Water Jet during Piercing of Ductile Material
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0377/22
Vedecká grantová agentúra MŠVVaŠ SR a SAV
PubMed
37176440
PubMed Central
PMC10179743
DOI
10.3390/ma16093558
PII: ma16093558
Knihovny.cz E-zdroje
- Klíčová slova
- continuous and pulsating water jet, erosion, erosion depth, microhardness,
- Publikační typ
- časopisecké články MeSH
More efficient ways to process materials are constantly being sought, even in the case of continuous water flow technology, which acts on materials mainly by stagnant pressure. An alternative method is an ultrasound-stimulated pulsating water jet, the basis of which is the repeated use of impact pressure, which reduces the time interval for mechanical relaxation. This article focuses on a comparative study from the point of view of water mass flow rate on material penetration and its integrity. Relatively low pressures (p = 20, 30, and 40 MPa) with varying nozzle diameters (d = 0.4 and 0.6 mm) were used to identify the effectiveness of the pulsating water jet. The time exposure of the jet at a fixed place was varied from t = 0.5 to 5 s for each experimental condition. The results showed that with an increase in the pressure and diameter values, the disintegration depth increased. In addition, the surface topography and morphology images showed signs of ductile erosion in the form of erosion pits, upheaved surfaces, and crater formation. The microhardness study showed an increase of 10% subsurface microhardness after the action of the pulsating water jet as compared to the original material.
Zobrazit více v PubMed
Ganovska B., Molitoris M., Hosovsky A., Pitel J., Krolczyk J.B., Ruggierio A., Krolczyk G.M., Hloch S. Design of the Model for the On-Line Control of the AWJ Technology Based on Neural Networks. Indian J. Eng. Mater. Sci. 2016;23:279–287.
Srivastava A.K., Nag A., Dixit A.R., Tiwari S., Scucka J., Zelenak M., Hloch S., Hlavacek P. Surface Integrity in Tangential Turning of Hybrid MMC A359/B4C/Al2O3 by Abrasive Waterjet. J. Manuf. Process. 2017;28:11–20. doi: 10.1016/j.jmapro.2017.05.017. DOI
Yuvaraj N., Pradeep Kumar M. Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Process. 2014;30:882–889. doi: 10.1080/10426914.2014.994763. DOI
Field J.E. ELSI Conference: Invited Lecture Liquid Impact: Theory, Experiment, Applications. Wear. 1999;233–235:1–12. doi: 10.1016/S0043-1648(99)00189-1. DOI
Folkes J. Waterjet—An Innovative Tool for Manufacturing. J. Mater. Process. Technol. 2009;209:6181–6189. doi: 10.1016/j.jmatprotec.2009.05.025. DOI
Kartal F., Gokkaya H. Turning with Abrasive Water Jet Machining—A Review. Eng. Sci. Technol. Int. J. 2013;16:113–122.
Vijay F. Ultrasonic Modulation of the Jet. [(accessed on 25 October 2017)]. Available online: DOI
Yang C., Hou S., Xu J., Zhang Y., Zheng Y., Fernandez-Rodriguez E., Zhou D. Multicomponentwater Effects on Rotating Machines Disk Erosion. Water. 2020;12:757. doi: 10.3390/w12030757. DOI
WJTA Proceedings of the 6th American Water Jet Conference; Proceedings of the WJTA American Waterjet Conference 1991 (6th); Houston, TX, USA. 24–27 August 1991.
Ma D., Mostafa A., Kevorkov D., Jedrzejowski P., Pugh M., Medraj M. Water Impingement Erosion of Deep-Rolled Ti64. Metals. 2015;5:1462–1486. doi: 10.3390/met5031462. DOI
Cook S.S. Erosion by Water-Hammer. Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character. 1928;119:481–488.
Ahmad M., Casey M., Sürken N. Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials. Wear. 2009;267:1605–1618. doi: 10.1016/j.wear.2009.06.012. DOI
Ibrahim M.E., Medraj M. Water Droplet Erosion Ofwind Turbine Blades: Mechanics, Testing, Modeling and Future Perspectives. Materials. 2020;13:157. doi: 10.3390/ma13010157. PubMed DOI PMC
Hloch S., Nag A., Pude F., Foldyna J., Zeleňák M. On-Line Measurement and Monitoring of Pulsating Saline and Water Jet Disintegration of Bone Cement with Frequency 20 kHz. Meas. J. Int. Meas. Confed. 2019;147:106828. doi: 10.1016/j.measurement.2019.07.056. DOI
Poloprudský J., Nag A., Kruml T., Hloch S. Effects of Liquid Droplet Volume and Impact Frequency on the Integrity of Al Alloy AW2014 Exposed to Subsonic Speeds of Pulsating Water Jets. Wear. 2022;488–489:204136. doi: 10.1016/j.wear.2021.204136. DOI
Hashish M. AWJ Milling of Gamma Titanium Aluminide. J. Manuf. Sci. Eng. 2010;132:041005. doi: 10.1115/1.4001663. DOI
Foldyna J., Sitek L., Švehla B., Švehla S. Utilization of Ultrasound to Enhance High-Speed Water Jet Effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI
Foldyna J., Svehla B. Method of Generation of Pressure Fluctuations and Apparatus for Implementation of This Method. 7,934,666 B2. U.S. Patent. 2011 May 3; Volume 2, pp. 1–5.
Heymann F.J. On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact. ASME J. Basic Eng. 1968;90:400–402. doi: 10.1115/1.3605114. DOI
Tijsseling A.S., Anderson A. Johannes von Kries and the History of Water Hammer. J. Hydraul. Eng. 2007;133:1–8.
Nag A., Hvizdos P., Dixit A.R., Petrů J., Hloch S. Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum. Wear. 2021;477:203893. doi: 10.1016/j.wear.2021.203893. DOI
Hloch S., Srivastava M., Nag A., Muller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of Pressure of Pulsating Water Jet Moving along Stair Trajectory on Erosion Depth, Surface Morphology and Microhardness. Wear. 2020;452–453:203278. doi: 10.1016/j.wear.2020.203278. DOI
Zeleňák M., Říha Z., Jandačka P. Visualization and Velocity Analysis of a High-Speed Modulated Water Jet Generated by a Hydrodynamic Nozzle. Measurement. 2020;159:107753. doi: 10.1016/j.measurement.2020.107753. DOI
Bowden F.P., Field J.E. The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1964;282:331–352. doi: 10.1098/rspa.1964.0236. DOI
Klich J., Klichova D., Foldyna V., Hlavacek P., Foldyna J. Influence of Variously Modified Surface of Aluminium Alloy on the Effect of Pulsating Water Jet. Stroj. Vestnik/J. Mech. Eng. 2017;63:577–582. doi: 10.5545/sv-jme.2017.4356. DOI
Srivastava M., Nag A., Chattopadhyaya S., Hloch S. Standoff Distance in Ultrasonic Pulsating Water Jet. Materials. 2020;14:88. doi: 10.3390/ma14010088. PubMed DOI PMC
Poloprudský J., Chlupová A., Kruml T., Hloch S., Hlaváček P., Foldyna J. Proceedings of the International Conference on Water Jet-Research, Development, Applications. Springer; Berlin/Heidelberg, Germany: 2019. Effect of Standoff Distance on the Erosion of Various Materials; pp. 164–171.
Chlupová A., Hloch S., Nag A., Šulák I., Kruml T. Effect of Pulsating Water Jet Processing on Erosion Grooves and Microstructure in the Subsurface Layer of 25CrMo4 (EA4T) Steel. Wear. 2023;524–525:204774. doi: 10.1016/j.wear.2023.204774. DOI
Lehocka D., Klich J., Foldyna J., Hloch S., Krolczyk J.B., Carach J., Krolczyk G.M. Copper Alloys Disintegration Using Pulsating Water Jet. Meas. J. Int. Meas. Confed. 2016;82:375–383. doi: 10.1016/j.measurement.2016.01.014. DOI
Nag A., Stolárik G., Svehla B., Hloch S. Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning; Proceedings of the Advances in Manufacturing Engineering and Materials II: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2020); Nový Smokovec, Slovakia. 21–25 June 2021; Berlin/Heidelberg, Germany: Springer International Publishing; 2021. pp. 142–154.
Hloch S., Souček K., Svobodová J., Hromasová M., Müller M. Subsurface Microtunneling in Ductile Material Caused by Multiple Droplet Impingement at Subsonic Speeds. Wear. 2022;490–491:204176. doi: 10.1016/j.wear.2021.204176. DOI
Heymann F.J. Erosion by Liquids. Mach. Des. 1970;10:118–124.
Foldyna J., Sitek L., Ščučka J., Martinec P., Valíček J., Páleníková K. Effects of Pulsating Water Jet Impact on Aluminium Surface. J. Mater. Process. Technol. 2009;209:6174–6180. doi: 10.1016/j.jmatprotec.2009.06.004. DOI
Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J., Hloch S., Čuha D., et al. Hydrodynamic Ductile Erosion of Aluminium by a Pulsed Water Jet Moving in an Inclined Trajectory. Wear. 2019;428–429:178–192. doi: 10.1016/j.wear.2019.03.015. DOI