Comparison of Continuous and Pulsating Water Jet during Piercing of Ductile Material

. 2023 May 06 ; 16 (9) : . [epub] 20230506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37176440

Grantová podpora
1/0377/22 Vedecká grantová agentúra MŠVVaŠ SR a SAV

More efficient ways to process materials are constantly being sought, even in the case of continuous water flow technology, which acts on materials mainly by stagnant pressure. An alternative method is an ultrasound-stimulated pulsating water jet, the basis of which is the repeated use of impact pressure, which reduces the time interval for mechanical relaxation. This article focuses on a comparative study from the point of view of water mass flow rate on material penetration and its integrity. Relatively low pressures (p = 20, 30, and 40 MPa) with varying nozzle diameters (d = 0.4 and 0.6 mm) were used to identify the effectiveness of the pulsating water jet. The time exposure of the jet at a fixed place was varied from t = 0.5 to 5 s for each experimental condition. The results showed that with an increase in the pressure and diameter values, the disintegration depth increased. In addition, the surface topography and morphology images showed signs of ductile erosion in the form of erosion pits, upheaved surfaces, and crater formation. The microhardness study showed an increase of 10% subsurface microhardness after the action of the pulsating water jet as compared to the original material.

Zobrazit více v PubMed

Ganovska B., Molitoris M., Hosovsky A., Pitel J., Krolczyk J.B., Ruggierio A., Krolczyk G.M., Hloch S. Design of the Model for the On-Line Control of the AWJ Technology Based on Neural Networks. Indian J. Eng. Mater. Sci. 2016;23:279–287.

Srivastava A.K., Nag A., Dixit A.R., Tiwari S., Scucka J., Zelenak M., Hloch S., Hlavacek P. Surface Integrity in Tangential Turning of Hybrid MMC A359/B4C/Al2O3 by Abrasive Waterjet. J. Manuf. Process. 2017;28:11–20. doi: 10.1016/j.jmapro.2017.05.017. DOI

Yuvaraj N., Pradeep Kumar M. Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach. Mater. Manuf. Process. 2014;30:882–889. doi: 10.1080/10426914.2014.994763. DOI

Field J.E. ELSI Conference: Invited Lecture Liquid Impact: Theory, Experiment, Applications. Wear. 1999;233–235:1–12. doi: 10.1016/S0043-1648(99)00189-1. DOI

Folkes J. Waterjet—An Innovative Tool for Manufacturing. J. Mater. Process. Technol. 2009;209:6181–6189. doi: 10.1016/j.jmatprotec.2009.05.025. DOI

Kartal F., Gokkaya H. Turning with Abrasive Water Jet Machining—A Review. Eng. Sci. Technol. Int. J. 2013;16:113–122.

Vijay F. Ultrasonic Modulation of the Jet. [(accessed on 25 October 2017)]. Available online: DOI

Yang C., Hou S., Xu J., Zhang Y., Zheng Y., Fernandez-Rodriguez E., Zhou D. Multicomponentwater Effects on Rotating Machines Disk Erosion. Water. 2020;12:757. doi: 10.3390/w12030757. DOI

WJTA Proceedings of the 6th American Water Jet Conference; Proceedings of the WJTA American Waterjet Conference 1991 (6th); Houston, TX, USA. 24–27 August 1991.

Ma D., Mostafa A., Kevorkov D., Jedrzejowski P., Pugh M., Medraj M. Water Impingement Erosion of Deep-Rolled Ti64. Metals. 2015;5:1462–1486. doi: 10.3390/met5031462. DOI

Cook S.S. Erosion by Water-Hammer. Proc. R. Soc. London. Ser. A Contain. Pap. Math. Phys. Character. 1928;119:481–488.

Ahmad M., Casey M., Sürken N. Experimental Assessment of Droplet Impact Erosion Resistance of Steam Turbine Blade Materials. Wear. 2009;267:1605–1618. doi: 10.1016/j.wear.2009.06.012. DOI

Ibrahim M.E., Medraj M. Water Droplet Erosion Ofwind Turbine Blades: Mechanics, Testing, Modeling and Future Perspectives. Materials. 2020;13:157. doi: 10.3390/ma13010157. PubMed DOI PMC

Hloch S., Nag A., Pude F., Foldyna J., Zeleňák M. On-Line Measurement and Monitoring of Pulsating Saline and Water Jet Disintegration of Bone Cement with Frequency 20 kHz. Meas. J. Int. Meas. Confed. 2019;147:106828. doi: 10.1016/j.measurement.2019.07.056. DOI

Poloprudský J., Nag A., Kruml T., Hloch S. Effects of Liquid Droplet Volume and Impact Frequency on the Integrity of Al Alloy AW2014 Exposed to Subsonic Speeds of Pulsating Water Jets. Wear. 2022;488–489:204136. doi: 10.1016/j.wear.2021.204136. DOI

Hashish M. AWJ Milling of Gamma Titanium Aluminide. J. Manuf. Sci. Eng. 2010;132:041005. doi: 10.1115/1.4001663. DOI

Foldyna J., Sitek L., Švehla B., Švehla S. Utilization of Ultrasound to Enhance High-Speed Water Jet Effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI

Foldyna J., Svehla B. Method of Generation of Pressure Fluctuations and Apparatus for Implementation of This Method. 7,934,666 B2. U.S. Patent. 2011 May 3; Volume 2, pp. 1–5.

Heymann F.J. On the Shock Wave Velocity and Impact Pressure in High-Speed Liquid-Solid Impact. ASME J. Basic Eng. 1968;90:400–402. doi: 10.1115/1.3605114. DOI

Tijsseling A.S., Anderson A. Johannes von Kries and the History of Water Hammer. J. Hydraul. Eng. 2007;133:1–8.

Nag A., Hvizdos P., Dixit A.R., Petrů J., Hloch S. Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum. Wear. 2021;477:203893. doi: 10.1016/j.wear.2021.203893. DOI

Hloch S., Srivastava M., Nag A., Muller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of Pressure of Pulsating Water Jet Moving along Stair Trajectory on Erosion Depth, Surface Morphology and Microhardness. Wear. 2020;452–453:203278. doi: 10.1016/j.wear.2020.203278. DOI

Zeleňák M., Říha Z., Jandačka P. Visualization and Velocity Analysis of a High-Speed Modulated Water Jet Generated by a Hydrodynamic Nozzle. Measurement. 2020;159:107753. doi: 10.1016/j.measurement.2020.107753. DOI

Bowden F.P., Field J.E. The Brittle Fracture of Solids by Liquid Impact, by Solid Impact, and by Shock. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1964;282:331–352. doi: 10.1098/rspa.1964.0236. DOI

Klich J., Klichova D., Foldyna V., Hlavacek P., Foldyna J. Influence of Variously Modified Surface of Aluminium Alloy on the Effect of Pulsating Water Jet. Stroj. Vestnik/J. Mech. Eng. 2017;63:577–582. doi: 10.5545/sv-jme.2017.4356. DOI

Srivastava M., Nag A., Chattopadhyaya S., Hloch S. Standoff Distance in Ultrasonic Pulsating Water Jet. Materials. 2020;14:88. doi: 10.3390/ma14010088. PubMed DOI PMC

Poloprudský J., Chlupová A., Kruml T., Hloch S., Hlaváček P., Foldyna J. Proceedings of the International Conference on Water Jet-Research, Development, Applications. Springer; Berlin/Heidelberg, Germany: 2019. Effect of Standoff Distance on the Erosion of Various Materials; pp. 164–171.

Chlupová A., Hloch S., Nag A., Šulák I., Kruml T. Effect of Pulsating Water Jet Processing on Erosion Grooves and Microstructure in the Subsurface Layer of 25CrMo4 (EA4T) Steel. Wear. 2023;524–525:204774. doi: 10.1016/j.wear.2023.204774. DOI

Lehocka D., Klich J., Foldyna J., Hloch S., Krolczyk J.B., Carach J., Krolczyk G.M. Copper Alloys Disintegration Using Pulsating Water Jet. Meas. J. Int. Meas. Confed. 2016;82:375–383. doi: 10.1016/j.measurement.2016.01.014. DOI

Nag A., Stolárik G., Svehla B., Hloch S. Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning; Proceedings of the Advances in Manufacturing Engineering and Materials II: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2020); Nový Smokovec, Slovakia. 21–25 June 2021; Berlin/Heidelberg, Germany: Springer International Publishing; 2021. pp. 142–154.

Hloch S., Souček K., Svobodová J., Hromasová M., Müller M. Subsurface Microtunneling in Ductile Material Caused by Multiple Droplet Impingement at Subsonic Speeds. Wear. 2022;490–491:204176. doi: 10.1016/j.wear.2021.204176. DOI

Heymann F.J. Erosion by Liquids. Mach. Des. 1970;10:118–124.

Foldyna J., Sitek L., Ščučka J., Martinec P., Valíček J., Páleníková K. Effects of Pulsating Water Jet Impact on Aluminium Surface. J. Mater. Process. Technol. 2009;209:6174–6180. doi: 10.1016/j.jmatprotec.2009.06.004. DOI

Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J., Hloch S., Čuha D., et al. Hydrodynamic Ductile Erosion of Aluminium by a Pulsed Water Jet Moving in an Inclined Trajectory. Wear. 2019;428–429:178–192. doi: 10.1016/j.wear.2019.03.015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...