Exploration of Effects of Graduated Compression Stocking Structures on Performance Properties Using Principal Component Analysis: A Promising Method for Simultaneous Optimization of Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 2022:31140/1312/3105
Czech University of Life Sciences Prague
TDF03-149
HEC Project
PubMed
35631928
PubMed Central
PMC9143032
DOI
10.3390/polym14102045
PII: polym14102045
Knihovny.cz E-zdroje
- Klíčová slova
- graduated compression stockings, inlay yarn, insertion density, medical textile, principal component analysis, thermo-phycological comfort,
- Publikační typ
- časopisecké články MeSH
This paper focuses on the comfort properties of graduated and preventive compression stockings for people who work long hours in standing postures and for athletes for proper blood circulation. The present study was conducted in order to investigate the effects of the yarn insertion density and inlaid stitches on the performance of the compression stockings. The effects of these parameters on the thermo-physiological comfort properties were tested with standard and developed methods of testing. All compression stockings were maintained with class 1 pressure as per German standards. The structural parameters of the knitted fabric structures were investigated. The stretching and recovery properties were also investigated to determine the performance properties. The theoretical pressure was predicated using the Laplace's law by testing the stockings' tensile properties. The compression interface pressures of all stockings were also investigated using a medical stocking tester (MST) from Salzmann AG, St. Gallen, Switzerland. Correlation between the theoretical pressures and pressures measured using the MST system were also assessed. The current research used a multi-response optimization technique, i.e., principal component analysis (PCA), to identify the best structure based on the optimalization of the above-mentioned properties. The results also revealed that samples with higher insertion density levels exhibit better comfort properties. The results showed that sample R1 was the best sample, followed by R2 and P. In addition, all developed stocking samples exhibited better comfort properties than the control sample from the market.
Zobrazit více v PubMed
William E.C., Jr. Preventing deep vein thrombosis in hospital inpatients. BMJ Clin. Rev. 2007;335:147–151. doi: 10.1136/bmj.39247.542477.AE. PubMed DOI PMC
Lindsay S.S., Boghossian R.S., Stewart M. Compression stockings for the initial treatment of varicose veins in patients without venous ulceration. Cochrane Data System. Rev. 2011;11:1–29. PubMed
Brijesh N. Compression therapy for venous leg ulcers. Indian Dermatol. Online J. 2014;5:378–382. doi: 10.4103/2229-5178.137822. PubMed DOI PMC
Guo X., Cui H., Wen X. Treatment of varicose veins of lower extremity: A literature review. Int. J. Clin. Exp. Med. 2019;12:2142–2150.
Siddique H.F., Mazari A.A., Havelka A., Kus Z. Performance Characterization and Pressure Prediction of Compression Socks. Fiber Polym. 2020;21:657–670. doi: 10.1007/s12221-020-9420-z. DOI
Weiss R.A., Duffy D. Clinical benefits of lightweight compression: Reduction of venous-related symptoms by ready-to-wear lightweight gradient compression hosiery. Dermatol. Surg. 1999;25:701–704. doi: 10.1046/j.1524-4725.1999.99064.x. PubMed DOI
[(accessed on 3 April 2021)]. Available online: https://my.clevelandclinic.org/health/diseases/4722-varicose-veins.
[(accessed on 3 April 2021)]. Available online: https://www.healthline.com/health/compression-stockings-for-varicose-veins#how-compression-stockings-workn.
Lawrence D., Kakkar V. Graduated, static, external compression of the lower limb: A physiological assessment. Br. J. Surg. 1980;67:119–121. doi: 10.1002/bjs.1800670214. PubMed DOI
Bochmann R.P., Seibel W., Haase E. External compression increases forearm perfusion. J. Appl. Physiol. 2005;99:2337–2344. doi: 10.1152/japplphysiol.00965.2004. PubMed DOI
Mervis J.S., Lev-Tov H. Compression Therapy, in Local Wound Care for Dermatologists. Springer; Berlin/Heidelberg, Germany: 2020. pp. 83–94.
Ahmad H.S., Jamshaid H. Development of thermo-physiologically Comfortable Knit Structure for Sports Application. Tekst. Ve Konfek. 2019;29:105–112. doi: 10.32710/tekstilvekonfeksiyon.570700. DOI
Ghosh A., Mal P., Majumdar A., Banerjee D. Analysis of Knitting Process Variables and Yarn Count Influencing the Thermo-physiological Comfort Properties of Single Jersey and Rib Fabrics. J. Inst. Eng. India Ser. E. 2016;97:89–98. doi: 10.1007/s40034-016-0079-3. DOI
Liu R., Kwok Y.L., Li Y., Lao T.T. Skin pressure profiles and variations with body postural changes beneath medical elastic compression stockings. Int. J. Dermatol. 2007;46:514–523. doi: 10.1111/j.1365-4632.2007.03175.x. PubMed DOI
Bruniaux P., Crepin D., Lun B. Modeling the mechanics of a medical compression stocking through its components behavior: Part 1—Modeling at the yarn scale. Text. Res. J. 2012;82:1833–1845. doi: 10.1177/0040517512441992. DOI
Cieślak M., Karaszewska A., Gromadzińska E., Jasińska I., Kamińska I. Comparison of methods for measurement of the pressure exerted by knitted fabrics. Text. Res. J. 2017;87:2117–2126. doi: 10.1177/0040517516665255. DOI
Troynikov O., Wardiningsih W., Watson C., Luca O. Influence of material properties and garment composition on pressure generated by sport compression garments. Procedia Eng. 2013;60:157–162. doi: 10.1016/j.proeng.2013.07.054. DOI
Liu R., La1 T.T., Wang S. Technical Knitting and Ergonomical Design of 3D Seamless Compression Hosiery and Pressure Performances in Vivo and in Vitro. Fiber. Polym. 2013;14:1391–1399. doi: 10.1007/s12221-013-1391-x. DOI
Partsch H., Partsch B., Braun W. Interface pressure and stiffness of ready made compression stockings: Comparison of in vivo and in vitro measurements. J. Vasc. Surg. 2006;44:809–814. doi: 10.1016/j.jvs.2006.06.024. PubMed DOI
Alisauskiene D., Mikucioniene D. Investigation on alteration of compression of knitted orthopaedic supports during exploitation. Mater. Sci. 2012;18:362–366. doi: 10.5755/j01.ms.18.4.3097. DOI
Sarı B., Oğlakcıoğlu N. Analysis of the parameters affecting pressure characteristics of medical stockings. J. Ind. Text. 2018;47:1083–1096. doi: 10.1177/1528083716662587. DOI
Ozbayrak N., Kavuşturan Y. The effects of inlay yarn amount and yarn count on extensibility and bursting strength of compression stockings. [(accessed on 24 April 2022)];Text. Appl. 2009 19:102–107. Available online: https://dergipark.org.tr/en/pub/tekstilvekonfeksiyon/issue/23634/251724.
Stolk R., Wegen C.P.M., Franken V., Neumann H. A method for measuring the dynamic behavior of medical compression hosiery during walking. Dermatol. Surg. 2004;30:729–736. doi: 10.1111/j.1524-4725.2004.30203.x. PubMed DOI
Liu R., Kwok Y.L., Li Y., Lao T.T., Zhang X. Quantitative assessment of relationship between pressure performances and material mechanical properties of medical graduated compression stockings. J. Appl. Polym. Sci. 2007;104:601–610. doi: 10.1002/app.25617. DOI
Lim C.S., Davies A.H. Graduated compression stockings. Can. Med. Assoc. J. 2014;186:E391–E398. doi: 10.1503/cmaj.131281. PubMed DOI PMC
[(accessed on 19 April 2022)]. Available online: https://www.shimaseiki.com/product/design/virtual_sampling/
Medical Compression Hosiery, Quality Assurance RALGZ 387/1. [(accessed on 24 April 2022)]. Available online: http://www.tagungsmanagement.org/icc/images/stories/PDF/ral_gz_387_englisch.pdf.
[(accessed on 15 April 2022)]. Available online: https://comprogear.com/washing-compression-socks.
Basra S.A., Rajput A.W., Zahid B., Asfand N., Azam Z., Jamshaid H. Investigations of stretch and recovery properties of knitted socks. Ind. Text. 2020;71:132–137. doi: 10.35530/IT.071.02.1671. DOI
Mishra R., Bhagti V., Behera B. Novelties of 3-D woven composites and nanocomposites. J. Text. Inst. 2014;105:84–92. doi: 10.1080/00405000.2013.812266. DOI
Schuren J., Mohr K. The efficacy of Laplace’s equation in calculating bandage pressure in venous leg ulcers. Wounds UK. 2008;4:38–47.
Abdelhamid R.R., Brigita K.S., Zuhaib A. Influence of Tensile Stress On Woven Compression Bandage Structure And Porosity. AUTEX Res. J. 2020;20:263–273. doi: 10.2478/aut-2019-0027. DOI
Ahmad N., Kamal S., Raza Z.A., Zeshan M., Abid S., Javed Z., Karahan M. Comparative Analysis of the Performances of Six Taguchi-Based Multi-Response Optimisation Techniques for Product Development in Textiles. Fibre. Text. East. Eur. 2021;5:100–108. doi: 10.5604/01.3001.0014.9312. DOI
Selvakumar S., Arulshri K., Padmanaban K., Sasikumar K. Design and optimization of machining fixture layout using ANN and DOE. Int. J. Adv. Manuf. Technol. 2013;65:1573–1586. doi: 10.1007/s00170-012-4281-2. DOI
Umair M., Shaker K., Ahmad N., Hussain M., Jabbar M., Nawab Y. Simultaneous optimization of woven fabric properties using principal component analysis. J. Nat. Fibers. 2017;14:846–857. doi: 10.1080/15440478.2017.1279994. DOI
Yu A., Sukigara S., Takeuchi S. Effect of inlaid elastic yarns and inlay pattern on physical properties and compression behaviour of weft-knitted spacer fabric. J. Ind. Text. 2020:1528083720947740. doi: 10.1177/1528083720947740. DOI
Repon M.R., Laureckiene G., Mikucioniene D. The Influence of Electro-Conductive Compression Knits Wearing Conditions on Heating Characteristics. Materials. 2021;14:6780. doi: 10.3390/ma14226780. PubMed DOI PMC
Xiong Y., Tao X. Compression Garments for Medical Therapy and Sports. Polymers. 2018;10:663. doi: 10.3390/polym10060663. PubMed DOI PMC
Mikučionienė D., Milašiūtė L. Influence of knitted orthopaedic support construction on compression generated by the support. J. Ind. Text. 2017;47:551–566. doi: 10.1177/1528083716661205. DOI
Rabe E., Partsch H., Junger M. Guidelines for clinical studies with compression devices in patients with venous disorders of lower limb. Eur. J. Vasc. Endovasc. Surg. 2008;35:494–500. doi: 10.1016/j.ejvs.2007.08.006. PubMed DOI
Chi Y.W. A new compression pressure measuring device. Veins Lymph. 2017;6:6636. doi: 10.4081/vl.2017.6636. DOI
Mishra R., Jamshaid H., Yosfani S., Hussain U. Thermo physiological comfort of single jersey knitted fabric derivatives. Fash. Text. 2021;8:40. doi: 10.1186/s40691-021-00266-5. DOI
Yao B., Li Y., Hu J., Kwok Y., Yeung K. An Improved Test Method for Characterizing the Dynamic Liquid Moisture Transfer in Porous Polymeric Materials. Polym. Test. 2006;25:677–689. doi: 10.1016/j.polymertesting.2006.03.014. DOI
Raza Z.A., Ahmad N., Kamal S. Multi-response optimization of rhamnolipid production using grey rational analysis in Taguchi method. Biotechnol. Rep. 2014;3:86–94. doi: 10.1016/j.btre.2014.06.007. PubMed DOI PMC
Cliff N. The eigenvalues-greater-than-one rule and the reliability of components. Psychol. Bull. 1988;103:276–279. doi: 10.1037/0033-2909.103.2.276. DOI