Ultrasonic Pulsating Water Jet Peening: Influence of Pressure and Pattern Strategy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0490
Slovak Research and Development Agency
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural and Investment Founds of Europe Union
PubMed
34683622
PubMed Central
PMC8537832
DOI
10.3390/ma14206019
PII: ma14206019
Knihovny.cz E-zdroje
- Klíčová slova
- PWJ peening, microhardness, surface modification, surface topography,
- Publikační typ
- časopisecké články MeSH
Peening techniques are nowadays attracting more research attention due to their association with the extending of the service life and improving surface texture of engineering components. Ultrasonic pulsating water jet peening represents a new way of mechanical surface treatment. Accelerated water droplets via hammer effect cause small elastic-plastic deformations on the surface. This work deals with peening of aluminum alloy using an ultrasonic pulsating water jet, where periodically acting water droplets were used as the peening medium. The aim of the work was the feasibility study of the peening process and to observe the effects of pressure (p = 10, 20 and 30 MPa) and pattern trajectory (linear hatch and cross hatch). The peened surfaces were analyzed by the surface roughness profile parameters Ra and Rz and the microhardness along the peening axis into the material. Graphically processed results show a clear increase of measured values with increasing pressure (p = 10, 20 and 30 MPa), where the roughness values ranged from 1.89 µm to 4.11 µm, and the microhardness values ranged from 43.3 HV0.005 to 47 HV0.005, as compared to 40.3 HV0.005 obtained for the untreated sample. The achieved results indicate potential using of an ultrasonic pulsating water jet as a new method of surface treatment of metals. By controlled distribution of water droplets, it is possible to achieve a local distribution of surface roughness, and at the same time, strengthening of the subsurface layers in the material without thermal influence on the material.
Department of Mechanical Engineering Indian Institute of Technology Dhanbad 826004 India
Faculty of Mechanical Engineering University of J E Purkyně in Ústí nad Labem 400 96 Czech Republic
Zobrazit více v PubMed
Magdowski R.M., Uggowitzer P.J., Speidel M.O. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks. Corros. Sci. 1985;25:745–756. doi: 10.1016/0010-938X(85)90008-3. DOI
Jacobus K., DeVor R.E., Kapoor S.G. Machining-induced residual stress: Experimentation and modeling. J. Manuf. Sci. Eng. 2000;122:20–31. doi: 10.1115/1.538906. DOI
Huang X., Sun J., Li J. Effect of Initial Residual Stress and Machining-Induced Residual Stress on the Deformation of Aluminium Alloy Plate. Stroj. Vestnik/J. Mech. Eng. 2015;61:131–137. doi: 10.5545/sv-jme.2014.1897. DOI
Peyre P., Scherpereel X., Berthe L., Carboni C., Fabbro R., Béranger G., Lemaitre C. Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng. A. 2000;280:294–302. doi: 10.1016/S0921-5093(99)00698-X. DOI
Gujba A.K., Medraj M. Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials. 2014;7:7925–7974. doi: 10.3390/ma7127925. PubMed DOI PMC
Srivastava M., Nag A., Krejčí L., Petrů J., Chattopadhyaya S., Hloch S. Effect of Periodic Water Clusters on AISI 304 Welded Surfaces. Materials. 2021;14:210. doi: 10.3390/ma14010210. PubMed DOI PMC
Natarajan Y., Murugesan P.K., Mohan M., Khan S.A.L.A. Abrasive water jet machining process: A state of art of review. J. Manuf. Process. 2020;49:271–322. doi: 10.1016/j.jmapro.2019.11.030. DOI
Foldyna J., Sitek L., Švehla B., Švehla Š. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI
Ramulu M., Kunaporn S., Arola D., Hashish M., Hopkins J. Waterjet machining and peening of metals. J. Press. Vessel Technol. 2000;122:90–95. doi: 10.1115/1.556155. DOI
Arola D., McCain M.L., Kunaporn S., Ramulu M. Waterjet and abrasive waterjet surface treatment of titanium: A comparison of surface texture and residual stress. Wear. 2001;249:943–950. doi: 10.1016/S0043-1648(01)00826-2. DOI
Kunaporn S., Ramulu M., Hashish M. Mathematical modeling of ultra-high-pressure waterjet peening. J. Eng. Mater. Technol. Trans. ASME. 2005;127:186–191. doi: 10.1115/1.1857934. DOI
Guha A., Barron R.M., Balachandar R. An experimental and numerical study of water jet cleaning process. J. Mater. Process. Technol. 2011;211:610–618. doi: 10.1016/j.jmatprotec.2010.11.017. DOI
Arola D.D., McCain M.L. Abrasive waterjet peening: A new method of surface preparation for metal orthopedic implants. J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2000;53:536–546. doi: 10.1002/1097-4636(200009)53:5<536::AID-JBM13>3.0.CO;2-V. PubMed DOI
Arola D., Alade A.E., Weber W. Improving fatigue strength of metals using abrasive waterjet peening. Mach. Sci. Technol. 2006;10:197–218. doi: 10.1080/10910340600710105. DOI
Sadasivam B., Hizal A., Arola D. Abrasive waterjet peening with elastic prestress: A parametric evaluation. Int. J. Mach. Tools Manuf. 2009;49:134–141. doi: 10.1016/j.ijmachtools.2008.10.001. DOI
Chen F.L., Siores E., Patel K., Momber A.W. Minimising particle contamination at abrasive waterjet machined surfaces by a nozzle oscillation technique. Int. J. Mach. Tools Manuf. 2002;42:1385–1390. doi: 10.1016/S0890-6955(02)00081-0. DOI
Balaji D.S., Jeyapoovan T. Multi-objective optimization in abrasive water jet peening on AA6063 alloy. Mater. Today Proc. 2021;45:1928–1933. doi: 10.1016/j.matpr.2020.09.220. DOI
Hashish M., Echert D.C. Abrasive-waterjet deep kerfing and waterjet surface cleaning for nuclear facilities. J. Eng. Ind. 1989;111:269–281. doi: 10.1115/1.3188759. DOI
Nag A., Hloch S., Čuha D., Dixit A.R., Tozan H., Petrů J., Hromasová M., Müller M. Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J. Manuf. Process. 2019;47:347–356. doi: 10.1016/j.jmapro.2019.10.008. DOI
Nag A., Hvizdos P., Dixit A.R., Petrů J., Hloch S. Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum. Wear. 2021;47:203893. doi: 10.1016/j.wear.2021.203893. DOI
Srivastava M., Nag A., Chattopadhyaya S., Hloch S. Standoff Distance in Ultrasonic Pulsating Water Jet. Materials. 2021;14:88. doi: 10.3390/ma14010088. PubMed DOI PMC
Srivastava M., Hloch S., Gubeljak N., Milkovic M., Chattopadhyaya S., Klich J. Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces. Measurement. 2019;143:81–92. doi: 10.1016/j.measurement.2019.04.082. DOI
Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J. Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear. 2019;428–429:178–192. doi: 10.1016/j.wear.2019.03.015. DOI
Srivastava M., Hloch S., Tripathi R., Kozak D., Chattopadhyaya S., Dixit A.R., Foldyna J., Hvizdos P., Fides M., Adamcik P. Ultrasonically generated pulsed water jet peening of austenitic stainless-steel surfaces. J. Manuf. Process. 2018;32:455–468. doi: 10.1016/j.jmapro.2018.03.016. DOI
Klich J., Klichova D., Foldyna V., Hlavacek P., Foldyna J. Influence of variously modified surface of aluminium alloy on the effect of pulsating water jet. Stroj. Vestnik/J. Mech. Eng. 2017;63:577–582. doi: 10.5545/sv-jme.2017.4356. DOI
Srivastava M., Hloch S., Krejci L., Chattopadhyaya S., Dixit A.R., Foldyna J. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Meas. J. Int. Meas. Confed. 2018;127:453–462. doi: 10.1016/j.measurement.2018.06.012. DOI
Nag A., Hloch S., Dixit A.R., Pude F. Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. Int. J. Adv. Manuf. Technol. 2020;110:829–840. doi: 10.1007/s00170-020-05892-9. DOI
Hlaváček P., Sitek L., Hela R., Bodnárová L. Advances in Manufacturing Engineering and Materials. Springer; Berlin/Heidelberg, Germany: 2019. Erosion test with high-speed water jet applied on surface of concrete treated with solution of modified lithium silicates; pp. 135–143.
Poloprudský J., Nag A., Kruml T., Hloch S. Effects of liquid droplet volume and impact frequency on the integrity of Al alloy AW2014 exposed to subsonic speeds of pulsating water jets. Wear. 2021:204136. doi: 10.1016/j.wear.2021.204136. DOI
Hloch S., Srivastava M., Nag A., Muller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear. 2020;452–453:203278. doi: 10.1016/j.wear.2020.203278. DOI
Poloprudský J., Chlupová A., Šulák I., Kruml T., Hloch S. Surface and Subsurface Analysis of Stainless Steel and Titanium Alloys Exposed to Ultrasonic Pulsating Water Jet. Materials. 2021;14:5212. doi: 10.3390/ma14185212. PubMed DOI PMC