Effect of Periodic Water Clusters on AISI 304 Welded Surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0490
Slovak Research and Development Agency
VEGA 1/0096/18,
Slovak Scientific Grant Agency
PubMed
33406742
PubMed Central
PMC7795861
DOI
10.3390/ma14010210
PII: ma14010210
Knihovny.cz E-zdroje
- Klíčová slova
- microhardness, pulsating water jet, residual stress, stainless steel, surface roughness, welded joints,
- Publikační typ
- časopisecké články MeSH
This study compared the effect of the interaction time of periodic water clusters on the surface integrity of AISI 304 tungsten inert gas (TIG) welded joints at different excitation frequencies, as the effect of the technological parameters of pulsating water jet (PWJ) on the mechanical properties of TIG welded joints are under-researched. The TIG welded joints were subjected to different frequencies (20 and 40 kHz) and traverse speeds (1-4 mm/s) at a water pressure of 40 MPa and a standoff distance of 70 mm. The effect of the interaction of the pulsating jet on the material and the enhancement in its mechanical properties were compared through residual stress measurements, surface roughness, and sub-surface microhardness. A maximum enhancement in the residual stress values of up to 480 MPa was observed in the heat-affected zone, along with a maximum roughness of 6.03 µm and a maximum hardness of 551 HV using a frequency of 40 kHz. The improvement in the surface characteristics of the welded joints shows the potential of utilizing pulsed water jet technology with an appropriate selection of process parameters in the treatment of welded structures.
Zobrazit více v PubMed
Ju D., Han B. Investigation of water cavitation peening-induced microstructures in the near-surface layer of pure titanium. J. Mater. Process. Technol. 2009;209:4789–4794. doi: 10.1016/j.jmatprotec.2008.12.006. DOI
Marín J.F.S., Blanco J., Giraldo J., Toro A. Cavitation erosion of martensitic and austenitic stainless steel welded coatings. Wear. 2011;271:1445–1453. doi: 10.1016/j.wear.2010.12.081. DOI
Wang Z., Kang Y., Wang X., Li D., Shi H. Effects of modulation position on the impact performance of mechanically modulated pulsed water jet. J. Manuf. Process. 2020;56:510–521. doi: 10.1016/j.jmapro.2020.05.011. DOI
Foldyna J. Acoustic Waves—From Microdevices to Helioseismology. IntechOpen; London, UK: 2011. Use of Acoustic Waves for Pulsating Water Jet Generation; pp. 323–342. DOI
Richman R.H., Mcnaughton W.P. Correlation of cavitation properties of metals erosion behavior with mechanical. Wear. 1990;140:63–82. doi: 10.1016/0043-1648(90)90122-Q. DOI
Mahdipoor M., Kevorkov D., Jedrzejowski P., Medraj M. Water droplet erosion mechanism of nearly fully-lamellar gamma TiAl alloy. Mater. Des. 2016;89:1095–1106. doi: 10.1016/j.matdes.2015.10.077. DOI
Gujba A., Hackel L., Kevorkov D., Medraj M. Water droplet erosion behaviour of Ti–6Al–4V and mechanisms of material damage at the early and advanced stages. Wear. 2016:109–122. doi: 10.1016/j.wear.2016.04.008. DOI
Azhari A., Schindler C., Li B. Effect of waterjet peening on aluminum alloy 5005. Int. J. Adv. Manuf. Technol. 2013;67:785–795. doi: 10.1007/s00170-012-4522-4. DOI
Azhari A., Schindler C., Kerscher E., Grad P. Improving surface hardness of austenitic stainless steel using waterjet peening process. Int. J. Adv. Manuf. Technol. 2012;63:1035–1046. doi: 10.1007/s00170-012-3962-1. DOI
Zeleňák M., Říha Z., Jandačka P. Visualization and velocity analysis of a high-speed modulated water jet generated by a hydrodynamic nozzle. Measurement. 2020;159:107753. doi: 10.1016/j.measurement.2020.107753. DOI
Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J. Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear. 2019:178–192. doi: 10.1016/j.wear.2019.03.015. DOI
Hloch S., Srivastava M., Nag A., Müller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear. 2020:203278. doi: 10.1016/j.wear.2020.203278. DOI
Foldyna J., Klich J., Hlavacek P., Zelenak M., Scucka J. Erosion of Metals by Pulsating Water. Jet. Teh. Vjesn. Gaz. 2012;19:381–386.
Foldyna J., Sitek L., Ščučka J., Martinec P., Valíček J., Páleníková K. Effects of pulsating water jet impact on aluminium surface. J. Mater. Process. Technol. 2009;209:6174–6180. doi: 10.1016/j.jmatprotec.2009.06.004. DOI
Zelenak M., Foldyna J., Scucka J., Hloch S., Riha Z. Visualisation and measurement of high-speed pulsating and continuous water jets. Measurement. 2015;72:1–8. doi: 10.1016/j.measurement.2015.04.022. DOI
Abdullah A., Malaki M., Eskandari A. Strength enhancement of the welded structures by ultrasonic peening. Mater. Des. 2012;38:7–18. doi: 10.1016/j.matdes.2012.01.040. DOI
Srivastava M., Hloch S., Krejci L., Chattopadhyaya S., Dixit A.R., Foldyna J. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Measurement. 2018;127:453–462. doi: 10.1016/j.measurement.2018.06.012. DOI
Mahdipoor M.S. Ph.D. Thesis. Concordia University; Montreal, QC, Canada: 2016. Water Droplet Erosion Resistant Materials and Surface Treatments.
Callister W.D., Rethwisch D.G. Materials Science and Engineering: An Introduction. Volume 1. Wiley; Hoboken, NJ, USA: 2010.
Azhari A., Sulaiman S., Rao A.K.P. A review on the application of peening processes for surface treatment. IOP Conf. Series: Mater. Sci. Eng. 2016;114:012002. doi: 10.1088/1757-899X/114/1/012002. DOI
Yin D., Wang D., Jing H., Huo L. The effects of ultrasonic peening treatment on the ultra-long life fatigue behavior of welded joints. Mater. Des. 2010;31:3299–3307. doi: 10.1016/j.matdes.2010.02.006. DOI
Ultrasonic Pulsating Water Jet Peening: Influence of Pressure and Pattern Strategy