Surface and Subsurface Analysis of Stainless Steel and Titanium Alloys Exposed to Ultrasonic Pulsating Water Jet
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19 000408S.
Grantová Agentura České Republiky
PubMed
34576433
PubMed Central
PMC8464823
DOI
10.3390/ma14185212
PII: ma14185212
Knihovny.cz E-resources
- Keywords
- 316L, Ti6Al4V, dislocation structure, eroded surface topography, initial erosion stage, water volume droplets,
- Publication type
- Journal Article MeSH
This article deals with the effect of periodically acting liquid droplets on the polished surfaces of AISI 316L stainless steel and Ti6Al4V titanium alloy. These materials were exposed to a pulsating water jet produced using an ultrasonic sonotrode with an oscillation frequency of 21 kHz placed in a pressure chamber. The only variable in the experiments was the time for which the materials were exposed to water droplets, i.e., the number of impingements; the other parameters were kept constant. We chose a low number of impingements to study the incubation stages of the deformation caused by the pulsating water jet. The surfaces of the specimens were studied using (1) confocal microscopy for characterizing the surface profile induced by the water jet, (2) scanning electron microscopy for detailed surface observation, and (3) transmission electron microscopy for detecting the changes in the near-surface microstructure. The surface described by the height of the primary profile of the surface increased with the number of impingements, and was substantially more intense in the austenitic steel than in the Ti alloy. Irregular surface depressions, slip lines, and short cracks were observed in the Ti alloy, whereas pronounced straight slip bands formed in the austenitic steel. The dislocation density near the surface was measured quantitatively, reaching high values of the order of 1014 m-2 in the austenitic steel and even higher values (up to 3 × 1015 m-2) in the Ti alloy. The origins of the mentioned surface features differed in the two materials: an intense dislocation slip on parallel slip planes for the Ti alloy and mechanical twinning combined with dislocation slip for the austenitic steel.
See more in PubMed
Fenoughty K.A., Jawaid A., Pashby I.R. Machining of advanced engineering materials using traditional and laser techniques. J. Mater. Process. Technol. 1994;42:391–400. doi: 10.1016/0924-0136(94)90145-7. DOI
Srivastava M., Hloch S., Tripathi R., Kozak D., Chattopadhyaya S., Dixit A.R., Foldyna J., Hvizdos P., Fides M., Adamcik P. Ultrasonically generated pulsed water jet peening of austenitic stainless−steel surfaces. J. Manuf. Process. 2018;32:455–468. doi: 10.1016/j.jmapro.2018.03.016. DOI
Srivastava M., Tripathi R., Hloch S., Chattopadhyaya S., Dixit A.R. Potential of using water jet peening as a surface treatment process for welded joints. Procedia Eng. 2016;149:472–480. doi: 10.1016/j.proeng.2016.06.694. DOI
Momber A. Synergetic effects of secondary liquid drop impact and solid particle impact during hydro−abrasive erosion of brittle materials. Wear. 2004;256:1190–1195. doi: 10.1016/j.wear.2003.10.007. DOI
Valíček J., Hloch S., Kozak D. Surface geometric parameters proposal for the advanced control of abrasive waterjet technology. Int. J. Adv. Manuf. Technol. 2009;41:323. doi: 10.1007/s00170-008-1489-2. DOI
Cook S.S. Erosion by water−hammer. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character. 1928;119:481–488.
Adler W.F. The mechanics of liquid impact. Acad. Press. Treatise Mater. Sci. Technol. 1979;16:127–183.
Srivastava M., Nag A., Chattopadhyaya S., Hloch S. Standoff Distance in Ultrasonic Pulsating Water Jet. Materials. 2020;14:88. doi: 10.3390/ma14010088. PubMed DOI PMC
Foldyna J., Sitek L., Scucka J., Martinec P., Valíček J., Páleníková K. Effects of pulsating water jet impact on aluminium surface. J. Mater. Process. Technol. 2009;209:6174–6180. doi: 10.1016/j.jmatprotec.2009.06.004. DOI
Srivastava M., Tripathi R., Hloch S., Rajput A., Khublani D., Chattopadhyaya S., Dixit A.R., Foldyna J., Adamčík P., Klich J., et al. Applications of Fluid Dynamics. Springer; Singapore: 2018. Surface Treatment of AISI 304 Using Pulsating Water Jet Peening. DOI
Srivastava M., Hloch S., Krejci L., Chattopadhyaya S., Dixit A.R., Foldyna J. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening. Measurement. 2018;127:453–462. doi: 10.1016/j.measurement.2018.06.012. DOI
Hloch S., Foldyna J., Pude F., Kľoc J., Zeleňák M., Hvizdoš P., Monka P., Smolko I., Ščučka J., Kozak D., et al. Experimental in−vitro bone cements disintegration with ultrasonic pulsating water jet for revision arthroplasty | Eksperimentalna in−vitro razgradnja koštanog cementa pomoću ultrazvučnog pulzirajućeg mlaza vode za potrebe revizijske artroplastike. Teh. Vjesn. 2015;22:1609–1615. doi: 10.17559/TV-20150822145550. DOI
Hloch S., Nag A., Pude F., Foldyna J., Zelenak M. On−line measurement and monitoring of pulsating saline and water jet disintegration of bone cement with frequency 20 kHz. Measurement. 2019;147:106828. doi: 10.1016/j.measurement.2019.07.056. DOI
Hloch S., Foldyna J., Sitek L., Zeleňák M., Hlaváček P., Hvizdoš P., Kľoc J., Monka P., Monková K., Kozak D., et al. Disintegration of bone cement by continuous and pulsating water jet. Tech. Gaz. 2017;3651:593–598.
Hreha P., Hloch S., Magurová D., Valíček J., Kozak D., Harničárová M., Rakin M. Water jet technology used in medicine. Teh. Vjesn. 2010;17:237–240.
Yang C., Hou S., Xu J., Zhang Y., Zheng Y., Fernandez−Rodriguez E., Zhou D. Multicomponentwater effects on rotating machines disk erosion. Water. 2020;12:757. doi: 10.3390/w12030757. DOI
Foldyna J., Klich J., Hlaváček P., Zeleňák M., Ščučka J. Erosion of metals by pulsating water jet|Erozija metala pomoću pul s irajućeg vodenog mlaza. Teh. Vjesn. 2012;19:381–386.
Nag A., Stolárik G., Svehla B., Hloch S. Advances in Manufacturing Engineering and Materials II: Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2020), 21–25 June, 2021, Nový Smokovec, Slovakia. Springer; Cham, Switzerland: 2021. Effect of Water Flow Rate on Operating Frequency and Power During Acoustic Chamber Tuning; pp. 142–154.
Hloch S., Adamčík P., Nag A., Srivastava M., Čuha D., Müller M., Hromasová M., Klich J. Hydrodynamic ductile erosion of aluminium by a pulsed water jet moving in an inclined trajectory. Wear. 2019;428–429:24–31. doi: 10.1016/j.wear.2019.03.015. DOI
Nag A., Hloch S., Čuha D., Dixit A.R., Tozan H., Petrů J., Hromasová M., Müller M. Acoustic chamber length performance analysis in ultrasonic pulsating water jet erosion of ductile material. J. Manuf. Process. 2019;47:749–778. doi: 10.1016/j.jmapro.2019.10.008. DOI
Zelenak M., Foldyna J., Scucka J., Hloch S., Říha Z. Visualisation and measurement of high−speed pulsating and continuous water jets. Measurement. 2015;72:1–8. doi: 10.1016/j.measurement.2015.04.022. DOI
Kamkar N., Bridier F., Jedrzejowski P., Bocher P. Water droplet impact erosion damage initiation in forged Ti−6Al−4V. Wear. 2015;322–323:192–202. doi: 10.1016/j.wear.2014.10.020. DOI
Burson−Thomas C.B., Wellman R., Harvey T.J., Wood R.J. Water droplet erosion of aeroengine fan blades: The importance of form. Wear. 2019;426–427:507–517. doi: 10.1016/j.wear.2018.12.030. DOI
Hloch S., Srivastava M., Nag A., Müller M., Hromasová M., Svobodová J., Kruml T., Chlupová A. Effect of pressure of pulsating water jet moving along stair trajectory on erosion depth, surface morphology and microhardness. Wear. 2020;452–453:203278. doi: 10.1016/j.wear.2020.203278. DOI
Klich J., Klichova D., Foldyna V., Hlavacek P., Foldyna J. Influence of variously modified surface of aluminium alloy on the effect of pulsating water jet. Stroj. Vestn./J. Mech. Eng. 2017;63:577–582. doi: 10.5545/sv-jme.2017.4356. DOI
Hancox N.L., Brunton J.H. The Erosion of Solids by the Repeated Impact of Liquid Drops. Philos. Trans. R. Soc. A. 1966;260:121–139.
Thomas G.P., Brunton J.H. Drop Impingement Erosion of Metals. Proc. R. Soc. A Math. Phys. Eng. Sci. 1970;314:549–565. doi: 10.1098/rspa.1970.0022. DOI
Nag A., Hvizdos P., Dixit A.R., Petrů J., Hloch S. Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum. Wear. 2021;447:203893. doi: 10.1016/j.wear.2021.203893. DOI
Ham R.K. The determination of dislocation densities in thin films. Philos. Mag. 1961;6:1183–1184. doi: 10.1080/14786436108239679. DOI
Kruml T., Pola J., Obrtli K., Degallaix S. Dislocation structures in the bands of localised cyclic plastic strain in austenitic 316L and austenitic−ferritic duplex stainless steels. Acta Mater. 1997;45:5145–5151. doi: 10.1016/S1359-6454(97)00178-X. DOI
Saada G. On hardening due to the recombination of dislocations. Acta Met. 1960;8:841–847. doi: 10.1016/0001-6160(60)90150-4. DOI
Kruml T., Martin J.-L. Dislocation densities and internal stress in Ni3Al. Philos. Mag. 2013;93:50–59. doi: 10.1080/14786435.2012.706371. DOI
Li Y., Laird C. Cyclic response and dislocation structures of AISI 316L stainless steel. Part 2: Polycrystals fatigued at intermediate strain amplitude. Mater. Sci. Eng. A. 1994;186:87–103. doi: 10.1016/0921-5093(94)90307-7. DOI
Obrtlík K., Kruml T., Polák J. Dislocation structures in 316L stainless steel cycled with plastic strain amplitudes over a wide interval. Mater. Sci. Eng. A. 1994;187:1–9. doi: 10.1016/0921-5093(94)90325-5. DOI
Ultrasonic Pulsating Water Jet Peening: Influence of Pressure and Pattern Strategy